设 $S_n=1+\dfrac12+\cdots+\dfrac1n$,$n$ 是正整数.证明:对满足 $0\leqslant a<b\leqslant1$ 的任意实数 $a,b$,数列 $\big\{S_n-[S_n]\big\}$ 中有无穷多项属于 $(a,b)$,这里 $[x]$ 表示不超过实数 $x$ 的最大整数.
2025年 12月 一 二 三 四 五 六 日 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 标签
-
近期文章
2025年 12月 一 二 三 四 五 六 日 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 标签
