圆内接八边形的面积

1978年Putnam数学竞赛B1:


一个圆内接八边形,各边长度依次为\(2, 2, 2, 2, 3, 3, 3, 3\),求这个八边形的面积.

继续阅读

发表在 趣味数学 | 标签为 , | 留下评论

一道叙述有误的模拟题

这是2013年昌平区二模的压轴题:

如果函数\(y=f(x)\)的定义域为\(\bf R\),对于定义域内的任意\(x\),存在实数\(a\)使得\(f(x+a)=f(-x)\)成立,则称此函数具有“\(P(a)\)性质”.

(1) 判断函数\(y=\sin x\)是否具有“\(P(a)\)性质”,若具有“\(P(a)\)性质”,求出所有的\(a\)的值;若不具有“\(P(a)\)性质”,请说明理由;

(2) 设函数\(y=g(x)\)具有“\(P(\pm 1)\)性质”,且当\(-\dfrac 12\leqslant x \leqslant \dfrac 12\)时,\(g(x)=|x|\).若\(y=g(x)\)与\(y=mx\)的交点个数为\(2013\),求\(m\)的值.

继续阅读

发表在 解题展示 | 标签为 , | 留下评论

2014年四川卷压轴题

2014年高考四川卷理科数学第21题、文科数学第21题(压轴题):

已知函数 \(f(x)={\rm e}^x-ax^2-bx-1\),其中\(a,b\in \bf R\),\({\rm e}=2.71828\cdots\)为自然对数的底.
(1)设\(g(x)\)是函数\(f(x)\)的导函数,求函数\(g(x)\)在区间\([0,1]\)上的最小值;
(2)若\(f(1)=0\),函数\(f(x)\)在区间\((0,1)\)内有零点,求\(a\)的取值范围.

继续阅读

发表在 解题展示 | 标签为 | 留下评论

一道共线向量的题

已知\(\vec a,\vec b,\vec c\)两两均不共线,\(\vec a + \vec b \parallel \vec c\),\(\vec b +\vec c\parallel \vec a\),求证:\(\vec a+\vec b+\vec c=\vec 0\).

继续阅读

发表在 解题展示 | 标签为 | 一条评论

2014年新课标II卷理科数学压轴题

2014年高考新课标II卷理科数学第21题(压轴题):

已知函数\(f(x)={\rm e}^x-{\rm e}^{-x}-2x\).

(1)讨论\(f(x)\)的单调性;

(2)设\(g(x)=f(2x)-4bf(x)\),当\(x>0\)时,\(g(x)>0\),求\(b\)的最大值;

(3)已知\(1.4142<\sqrt 2<1.4143\),估计\(\ln 2\)的近似值(精确到\(0.001\)).

继续阅读

发表在 解题展示 | 标签为 | 留下评论

一道函数不等式

已知\(x\in \left(0,\dfrac \pi 2\right)\),求证:\(\sin {\sqrt x}<\sqrt {\sin x}\).

继续阅读

发表在 解题展示 | 标签为 , | 留下评论

2014年华中科技大学理科实验班选拔试题—数学

一、填空题(本题共5小题,每小题8分,共40分)

1、设\(f(x)=\dfrac{x}{\sqrt{1+x^2}}\),则\(n\)重复合函数\(f_n(x)=f(f(\cdots f(x)\cdots))=\)_______.

2、设多项式\(p(x)\)满足\(p\left(x^2+1\right)=\left(p(x)\right)^2+1\)和\(p(0)=0\),则\(p(x)=\)_______.

3、设\(S_n=\sum\limits_{k=1}^n\dfrac{6^k}{\left(3^{k+1}-2^{k+1}\right)\left(3^k-2^k\right)}\),则极限\(\lim\limits_{n\to\infty}S_n=\)_______.

4、对\(x>0\),函数\(f(x)=\dfrac{\left(x+\dfrac1x\right)^6-\left(x^6+\dfrac1{x^6}\right)-2}{\left(x+\dfrac1x\right)^3+\left(x^3+\dfrac1{x^3}\right)}\)的最小值为_______.

5、假设\(20\)名学生中的每一名学生可从提供的六门课程中选学一门至六门,也可以一门都不选.试判断下列命题是否正确:存在\(5\)名学生和两门课程,使得这\(5\)名学生都选了这两门课,或者都没选,选填“正确”或“否”_______.

二、(本题共14分)

1、若\(a\)为正整数而\(\sqrt a\)不为整数,证明:\(\sqrt a\)为无理数.

2、试证:除\(0,0,0\)外,没有其他整数\(m,n,p\)使得\[m+n\sqrt2+p\sqrt3=0.\] 三、(本题共16分) 设\(a,b,c\)为三角形三边之长,\(p=\dfrac{a+b+c}2\),\(r\)为内切圆半径,证明:\[\dfrac1{(p-a)^2}+\dfrac1{(p-b)^2}+\dfrac1{(p-c)^2}\geqslant\dfrac1{r^2}.\]

四、(本题共12分) 证明:设\(m\)是任一正整数,则\(a_m=\dfrac12+\dfrac13+\dfrac14+\dfrac15+\cdots+\dfrac1{2^m}\)不是整数.

五、(本题共18分) 下图是2013年恒大足球俱乐部策划的主场与首尔FC足球队的亚冠决赛海报,左边是恒大队,右边是首尔队,该海报的寓意是什么?要求简单推导海报中两个数学式子的结果.一个数学式子是\(\sqrt{1+2\sqrt{1+3\sqrt{1+4\sqrt{1+\cdots}}}}\)(拉马努金式子),另一个是\(\mathrm e^{\pi \mathrm i}+1\)(已知欧拉公式\(\mathrm e^{\pi \mathrm i}=\cos\alpha+\mathrm i\sin\alpha\)). 图片20


参考答案

一、填空题

1、\(\dfrac{x}{\sqrt{1+nx^2}}\).

2、\(x\)    提示    方程\(p(x)-x=0\)有无数个零点,于是\(p(x)=x\).

3、\(2\)    提示    裂项为\(\dfrac{2^k}{3^k-2^k}-\dfrac{2^{k+1}}{3^{k+1}-2^{k+1}}\).

4、\(6\)    提示    函数\(f(x)=3\left(x+\dfrac 1x\right)\).

5、否    提示    \(6\)门课中选\(3\)门共有\({\rm C}_6^3=20\)种不同的组合,让每个同学分别选一种组合,那么任何两门课同时选和同时不选的同学数均为\(4\).

二、略    

提示   均用反证法.

三、略    

提示    \(pr=S\),而\(S=\sqrt{p(p-a)(p-b)(p-c)}\).

四、略

提示    设右边的公分母为\[\left[2,3,4,\cdots,2^m\right]=2^m\cdot p,\]其中\(p\)是一个奇数,两边同时乘以公分母,则左边是偶数,而右边为奇数.

注一    利用这个方法可以证明\(\sum\limits_{i=1}^n{\dfrac 1i}\),其中\(n\in\mathcal N^*\)且\(n\geqslant 2\)均不是整数.另外,这个方法中从\(2\)的方幂出发也不是必须的.

注二    也可以两边同时乘以\(\dfrac{[2,3,\cdots,2^m]}p\),其中\(p\)为右边各分母分解质因数后的最大奇素数因子,根据伯特兰-切比雪夫定理,含\(p\)的项唯一,进而即得.

五、\(3:0\)

提示    拉马努金恒等式,注意到\[n=\sqrt{1+(n-1)(n+1)},\]于是\[\begin{split}3&=\sqrt{1+2\cdot 4}\\&=\sqrt{1+2\sqrt{1+3\cdot 5}}\\&=\sqrt{1+2\sqrt{1+3\sqrt{1+4\cdot 6}}}\\&=\cdots\end{split}.\]

点击此处下载pdf.

发表在 自招竞赛 | 留下评论

2014年清华大学艺术生考试(回忆版)

1、已知函数$f(x)=\ln x-2x$.

(1)求函数$f(x)$的单调区间;

(2)若两个不相等的正实数$x_1,x_2$满足$f(x_1)=f(x_2)$,证明:$x_1+x_2>1$.

继续阅读

发表在 每日一题 | 留下评论

2014年中国科学技术大学入学考试数学试题

   以下试题均为学生回忆的试题,不能保证真实性和正确性.欢迎读者给出解答,谢谢!

1、函数\(y=\cos\left(\pi x\right),x\in (2013,2014]\)的反函数为_______.

2、如图为某空间几何体的展开图,则该空间几何体共有_______条棱.

QQ20150616-4

3、除\(x=1\)外,圆\(x^2+y^2=1\)与圆\((x-2)^2+(y-3)^2=1\)的另一条公切线方程为_______.

4、散点\((1.0,0.9)\),\((2.0,1.9)\),\((3.0,3.2)\)对应的回归直线方程为_______.

5、\(y=\sin\left(\omega x+\varphi\right)\)与\(y=\sin\left(2x+\dfrac{\pi}{3}\right)\)的图象关于\(x=-1\)对称,则所有可能的\(\varphi=\)_______.

6、向量\((1,2)\)绕点\((1,1)\)顺时针旋转\(45^\circ\)后所得的向量为_______.

7、\(\left|2x-y\right|+\left|x-2y\right|\leqslant 3\)所表示的平面区域面积为_______.

8、离散型随机变量\(X\)满足:\(E(X)=1\),\(D(X)=2\),则\(E\left(X^2\right)=\)_______.

9、圆\(C:x^2+y^2-2x-2y+1=0\)内位于直线\(l:y=x\tan\theta\)下方的面积为\(S\),其中\(\theta\in\left(0,\dfrac{\pi}{2}\right)\).

(1)求\(S(\theta)\)的表达式;

(2)求函数\(S(\theta)\)与函数\(S'(\theta)\)的单调性;

(3)画出\(S(\theta)\)的草图.

10、证明椭圆的光学性质.

11、已知甲袋中装有\(5\)个红球,乙袋中装有\(5\)个白球.每次从甲、乙两袋中分别随机摸一个球,同时放入对方袋中.\(n\)次操作后,甲袋中红球的个数记为\(X\).求\(X\)的分布列和数学期望.

发表在 自招竞赛 | 留下评论

2014年北京大学全国优秀中学生体验营数学试卷

说明    文科考生做前5题,理科考生做后5题,每题20分, 共100分.

1、设关于\(x\)的方程\(x^2-ax+2a-2=0\)在区间\(\left[0,\dfrac 32\right]\)内有根,求实数\(a\)的取值范围.

2、设\(a,b,c\)满足\(a+b+c=a^3+b^3+c^3=0\),\(n\)为任意自然数,求\(a^{2n+1}+b^{2n+1}+c^{2n+1}\)的值.

3、证明:若\(n\)为不小于\(2\)的自然数,\(t\)为实数且\(\sin\dfrac{t}{2}\neq 0\),则\[\sum_{k=1}^n\left(1+\sum_{p=1}^{k-1}2\cos pt\right)=\left(\dfrac{\sin\frac{nt}2}{\sin\frac t2}\right)^2.\]

4、一个等腰梯形的腰和底的长分别为\(\sqrt 2\)和\(3\),求这个梯形面积的最大值.

5、求出所有实数\(x\),使得\(\dfrac{x^2+4x-1}{7x^2-6x-5}\)与\(\dfrac{1-x}{1+x}\)同时为整数.

6、顶点为\(A\)的等腰三角形\(ABC\)的角\(B\)的平分线交\(AC\)于\(D\),已知\(BC=BD+AD\),求角\(A\)的度数. QQ20150611-1@2x7、设\(a,b,c\)是实数,方程\(x^3+ax^2+bx+c=0\)有\(3\)个正根,证明\(2a^3+9c\leqslant 7ab\),并且等号成立当且仅当这\(3\)个正根相等. 继续阅读

发表在 自招竞赛 | 留下评论