每日一题[1325]内切圆代换

在 $\triangle ABC$ 中,$a,b,c$ 分别为 $\triangle ABC$ 的三边长,证明:\[a^2\left(\dfrac bc-1\right)+b^2\left(\dfrac ca-1\right)+c^2\left(\dfrac ab-1\right)\geqslant 0.\]

继续阅读

发表在 每日一题 | 标签为 | 留下评论

每日一题[1324]江山快手

求证:$\dfrac{\ln^2x+3\ln x+3}{x^2}>\dfrac{3}{{\rm e}^x}$.

继续阅读

发表在 每日一题 | 标签为 | 留下评论

每日一题[1323]数列的基本量

已知等差数列 $\{a_n\}$ 满足 $a_4>0$,$a_5<0$,数列 $\{a_n\}$ 的前 $n$ 项和为 $S_n$,则 $\dfrac{S_5}{S_4}$ 的取值范围是_______.

继续阅读

发表在 每日一题 | 标签为 | 留下评论

每日一题[1322]去头截尾

已知数列 $\{a_n\}$ 的前 $n$ 项和为 $S_n$,$a_1=15$ 且满足 $(2n-5)a_{n+1}=(2n-3)a_n+4n^2-16n+15$.已知 $n,m\in\mathbb N^{\ast}$且$n\ge m$,则 $S_n-S_m$ 的最小值为_______.

继续阅读

发表在 每日一题 | 标签为 | 留下评论

每日一题[1321]人小鬼大

函数 $f(x)=\cos x-\sin x-\cos 2x$ 的最小值是_______.

继续阅读

发表在 每日一题 | 标签为 | 留下评论

每日一题[1320]逃得了和尚逃不了庙

设函数 $f(x)=|x^2+a|+|x+b|$($a,b\in\mathbb R$),当 $x\in [-2,2]$ 时,记 $f(x)$ 的最大值为 $M(a,b)$,则 $M(a,b)$ 的最小值是_______.

继续阅读

发表在 每日一题 | 标签为 | 留下评论

每日一题[1319]换位思考

已知点 $M(3,2)$ 到抛物线 $C:y=ax^2$($a>0$)准线的距离为 $4$,$F$ 为抛物线的焦点,点 $N(1,1)$,点 $P$ 在直线 $l:x-y-2=0$ 上运动时,$\dfrac{|PN|-1}{|PF|}$ 的最小值为(       )

A.$\dfrac{3-2\sqrt 2}8$

B.$\dfrac{2-\sqrt 2}4$

C.$\dfrac{5-2\sqrt 2}8$

D.$\dfrac{5-2\sqrt 2}4$

继续阅读

发表在 每日一题 | 标签为 | 留下评论

每日一题[1318]欲盖弥彰

已知等差数列 $\{a_n\}$ 满足 $a_{1009}^3+\dfrac{1}{2^{a_{1009}}+1}=-4$,$a_{1010}^3+\dfrac{1}{2^{a_{1010}}+1}=5$,则其前 $2018$ 项和 $S_{2018}=$ _______.

继续阅读

发表在 每日一题 | 留下评论

每日一题[1317]估计立方根

求证:$\dfrac 74<\sqrt[3]4-\sqrt[3]6+\sqrt[3]9<2$.

继续阅读

发表在 每日一题 | 标签为 | 留下评论

每日一题[1316]横竖均可

已知数列 $\{a_n\}$ 的通项为 $a_n=\dfrac{2^n}{3^{2^n}+1}$,用 $S_n$ 表示其前 $n$ 项和,$P_n$ 表示其前 $n$ 项之积,则 $\dfrac{S_n}{P_n}=$_______.

答案    $\dfrac{3^{2^{n+1}}-2^{n+3}-1}{2^{\frac 12n(n+1)+5}}$

解析    注意到\[\dfrac{2^n}{1+3^{2^n}}=\dfrac{2^{n+1}}{1-3^{2^{n+1}}}-\dfrac{2^n}{1-3^{2^n}},\]于是\[S_n=\dfrac{2^{n+1}}{1-3^{2^{n+1}}}-\dfrac{2}{1-3^2}=\dfrac{2^{n+1}}{1-3^{2^{n+1}}}+\dfrac 14,\]又\[\dfrac{2^n}{1+3^{2^n}}=2^n\cdot \dfrac{1-3^{2^{n}}}{1-3^{2^{n+1}}},\]于是\[P_n=2^{1+2+\cdots+n}\cdot \dfrac{1-3^2}{1-3^{2^{n+1}}}=\dfrac{2^{\frac 12n(n+1)+3}}{3^{2^{n+1}}-1}.\]从而\[\dfrac{S_n}{P_n}=\dfrac{3^{2^{n+1}}-2^{n+3}-1}{2^{\frac 12n(n+1)+5}}.\]

发表在 每日一题 | 标签为 | 留下评论