已知数列$\{a_n\}$满足$a_0=1$,$a_{n+1}=\dfrac{a_n}{1+a_n^2}$($n\in\mathbb N$).
(1)求证:对任意正整数$n$,均有$a_{n+1}<a_n$;
(2)求证:对任意正整数$n$,均有$a_n<\dfrac 3{4\sqrt n}$;
(3)求证:$a_0+a_1+\cdots+a_n\geqslant \sqrt{2n+4}-1$.
2025年 12月 一 二 三 四 五 六 日 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 标签
-
近期文章
2025年 12月 一 二 三 四 五 六 日 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 标签

