已知锐角 △ABC 中 A=π6,H 为 △ABC 的垂心且 AH=√3,则 √3BH+CH 的取值范围是_______.
答案 (1,√3).
解法一 如图.
根据题意,△ABC 的外接圆直径d=AHcosA=2,
于是√3BH+CH=2√3cosB+2cosC=2√3cosB+2cos(5π6−B)=√3cosB+sinB=2sin(B+π3),
其中 π3<B<π2,于是所求取值范围是 (1,√3).
解法二 由于 A,F,H,E 四点共圆,于是∠FHB=∠EHC=π6,
设 ∠BAH=θ,则BH=2sinθ,CH=2sin(π6−θ),
从而√3BH+CH=2√3sinθ+2sin(π6−θ)=2sin(θ+π6),
其中 θ∈(0,π6),从而所求取值范围是 (1,√3).