已知$n$是正整数,数列$\{a_k\}$满足$a_1=\dfrac{1}{n(n+1)}$,且\[a_{k+1}=-\dfrac{1}{k+n+1}+\dfrac nk\sum_{i=1}^ka_i,\]其中$k=1,2,\cdots$.
(1) 求$a_2,a_3$;
(2) 求数列$\{a_k\}$的通项;
(3) 设$b_n=\displaystyle \sum_{k=1}^n\sqrt{a_k}$,求证:$\lim\limits_{n\to \infty}b_n=\ln 2$.