数列 {an} 满足 an+2+(−1)nan=3n−1,前 16 项和为 540,则 a1=_______.
答案 7.
解析 在题中等式中分别取 n=2,6,10,14,可得{a2+a4=5,a6+a8=17,a10+a12=29,a14+a16=41,⟹a2+a4+a6+a8+a10+a12+a14+a16=92.令 n=2k−1,可得a2k+1=a2k−1+6k−4⟹a2k+1=a1+3k2−k,因此a1+a3+⋅+a15=8a1+7∑k=1(3k2−k)=8a1+392,从而540=92+(8a1+392)⟺a1=7.