在有理数范围内分解因式:x15−1= _______.
答案 (x−1)(x2+x+1)(x4+x3+x2+x+1)(x8−x7+x5−x4+x3−x+1).
解析 考虑单位根 (2kπ15:1)(k=0,1,2,⋯,14),因此x15−1=(x−1)(x2+x+1)(x4+x3+x2+x+1)⋅f(x),
进而f(x)=(x−1)(x15−1)(x3−1)(x5−1)=x8−x7+x5−x4+x3−x+1,
从而x15−1=(x−1)(x2+x+1)(x4+x3+x2+x+1)(x8−x7+x5−x4+x3−x+1).