已知 n⩾ 且 n\in\mathbb N,求证:{\rm e}^{n-1}\cdot n!<n^{n+\frac 12}.
解析 题中不等式即\left(n+\dfrac 12\right)\ln n-(\ln 2+\cdots+\ln n)-n+1>0,记左侧代数式为 f(n).当 n=2 时,有f(2)=\dfrac 32\left(\ln 2-\dfrac 23\right)>0,命题成立.而\begin{split} f(n+1)-f(n)&=\left(n+\dfrac 32\right)\ln (n+1)-\left(n+\dfrac 12\right)\ln n- \ln(n+1)-1\\ &=\left(n+\dfrac 12\right)\ln\left(1+\dfrac 1n\right)-1,\end{split}我们熟知当 x>1 时,有\ln x>\dfrac{2(x-1)}{x+1},令 x=1+\dfrac 1n,则\ln\left(1+\dfrac 1n\right)>\dfrac{\dfrac 2n}{2+\dfrac 1n}=\dfrac {2}{2n+1},因此\left(n+\dfrac 12\right)\ln \left(1+\dfrac 1n\right)-1>0,从而f(n+1)>f(n)>0,因此 f(n) 单调递增,从而命题成立.