1、已知函数\(f(x)=2mx^2-4(4-m)x+1\),\(g(x)=mx\),若对于任意实数\(x\),\(f(x)\)与\(g(x)\)的值至少有一个为正数,则实数\(m\)的取值范围是_______.
2、已知\(x\in\mathcal R\),定义:\(\lceil x\rceil\)表示不小于\(x\)的最小整数.若\(\lceil 2x+1\rceil=3\),则\(x\)的取值范围是_______;若\(x>0\)且\(\lceil 2x\cdot \lceil x\rceil\rceil=5\),则\(x\)的取值范围是_______.
3、\(\lim\limits_{x\to 4}{\dfrac{\sqrt{2x+1}-3}{\sqrt x-2}}=\)_______.
4、设\(\left\{a_n\right\}\)满足:\(a_{n+1}=\dfrac{1}{4}\left(a_n^4+3\right)\),\(a_1>1\).求证:\[\sum_{n=1}^{\infty}\dfrac{a_n^2+2a_n+3}{\left(a_n+1\right)\left(a_n^2+1\right)}=\dfrac{1}{a_1-1}.\]
5、求证:\(\sum\limits_{n=1}^{\infty}{\dfrac{1}{2^n-\dfrac 1{2^n}}}<\dfrac 43\).
6、在三角形\(ABC\)中,角\(A\)、\(B\)、\(C\)的对边分别为\(a\)、\(b\)、\(c\),且满足\(\left(2a-c\right)\cos B=b\cos C\).
(1)求\(B\)的大小;
(2)求\(\cos^2A+\sin^2C\)的最大值.
7、设二次函数\(y=f(x)\)的图象过点\((0,0)\),且满足对任意实数\(x\)均有\[-3x^2-1\leqslant f(x)\leqslant 6x+2.\]数列\(\left\{a_n\right\}\)满足:\(a_1=\dfrac 13\),\(a_{n+1}=f\left(a_n\right)\).
(1)确定\(f(x)\)的解析式;
(2)求证:\(a_{n+1}>a_n\);
(3)求证:\(\dfrac{1}{\dfrac 12-a_1}+\dfrac{1}{\dfrac 12-a_2}+\cdots+\dfrac{1}{\dfrac 12-a_n}\geqslant 3^{n+1}-3\).
继续阅读 →