今天的题目是2015年北京市海淀区高三二模理科数学压轴题:
对于数列\(A:a_1,a_2,\cdots,a_n\),经过变换\(T\):交换\(A\)中某相邻两段的位置(数列\(A\)中的一项或连续的几项称为一段),得到数列\(T(A)\).例如,数列\(A\):\[a_1,\cdots,a_i,\underbrace{a_{i+1},\cdots,a_{i+p}}_M,\underbrace{a_{i+p+1},\cdots,a_{i+p+q}}_N,a_{i+p+q+1},\cdots,a_n\]经交换\(M\)、\(N\)两段位置,变换为数列\(T(A)\):\[a_1,\cdots,a_i,\underbrace{a_{i+p+1},\cdots,a_{i+p+q}}_N,\underbrace{a_{i+1},\cdots,a_{i+p}}_M,a_{i+p+q+1},\cdots,a_n,\]其中\(p\geqslant 1\),\(q\geqslant 1\).设\(A_0\)是有穷数列,令\(A_{k+1}=T\left(A_k\right)\)(\(k=0,1,2,\cdots\)).
(1)如果数列\(A_0\)为\(3,2,1\),且\(A_2\)为\(1,2,3\),写出数列\(A_1\);(写出一个即可);
(2)如果数列\[\begin{split}A_0:9,8,7,6,5,4,3,2,1,\\A_1:5,4,9,8,7,6,3,2,1,\\A_2:5,6,3,4,9,8,7,2,1,\\A_5:1,2,3,4,5,6,7,8,9.\end{split}\]写出数列\(A_3\),\(A_4\);(写出一组即可);
(3)如果数列\(A_0\)为等差数列:\(2015,2014,\cdots,1\),\(A_n\)为等差数列:\(1,2,\cdots,2015\),求\(n\)的最小值.