每日一题[135] 共圆的向量表达

2015年北京市东城区高三二模理科数学第8题:

在平行四边形\(ABCD\)中,\(\angle BAD=60^\circ\),\(AD=2AB\),若\(P\)是平面\(ABCD\)内一点且满足\(x\overrightarrow{AB}+y\overrightarrow{AD}+\overrightarrow{PA}=\overrightarrow 0(x,y\in\mathcal R)\),则当点\(P\)在以\(A\)为圆心,\(\dfrac{\sqrt 3}{3}\left|\overrightarrow{BD}\right|\)为半径的圆上时,\(x,y\)应满足的关系式为(        )

A.\(4x^2+y^2+2xy=1\)

B.\(4x^2+y^2-2xy=1\)

C.\(x^2+4y^2-2xy=1\)

D.\(x^2+4y^2+2xy=1\)


cover正确的答案是D.

QQ20150602-2

如图,不妨设\(AD=2AB=2\),则\(BD=\sqrt 3\),于是圆的半径为\(1\).由于\[\overrightarrow{AP}=x\overrightarrow{AB}+y\overrightarrow{AD},\]于是\[\overrightarrow{AP}\cdot\overrightarrow{AP}=\left(x\overrightarrow{AB}+y\overrightarrow{AD}\right)\cdot\left(x\overrightarrow{AB}+y\overrightarrow{AD}\right),\]化简得\[x^2+4y^2+2xy=1,\]因此选D.

此条目发表在每日一题分类目录,贴了标签。将固定链接加入收藏夹。

发表回复