已知正实数 x,y,z 满足 xy+yz+zx≠1,且(x2−1)(y2−1)xy+(y2−1)(z2−1)yz+(z2−1)(x2−1)zx=4.
求 1xy+1yz+1zx 的值.
答案 1.
解析 根据题意,有∑cycz(x2−1)(y2−1)−4xyz=0,
即∑cyc(x2y2z−x(y2+z2)+x)−4xyz=0,
也即xyz(∑cyc(xy)−1)−∑cyc(xy2+x2y+xyz)+∑cycx=0,
即xyz(∑cyc(xy)−1)−∑cycx⋅∑cyc(xy)−∑cycx=0,
即(xyz−∑cycx)(∑cyc(xy)−1)=0,
根据题意,有 xy+yz+zx≠1,因此xyz−(x+y+z)=0⟺1xy+1yz+1zx=1.