每日一题[1924]裂项求和

求证:$\displaystyle\sum_{k=1}^n\dfrac{k+1}{k^2(k+2)^2}<\dfrac{5}{16}$.

解析

根据题意,有\[\sum_{k=1}^n\dfrac{k+1}{k^2(k+2)^2}=\sum_{k=1}^n\left(\dfrac{1}{4k^2}-\dfrac{1}{4(k+2)^2}\right)=\dfrac 14+\dfrac{1}{16}-\dfrac{1}{4(n+1)^2}-\dfrac{1}{4(n+2)^2}<\dfrac 5{16}.\]

此条目发表在每日一题分类目录,贴了, 标签。将固定链接加入收藏夹。

发表评论