每日一题[1431]根式的放缩

设 $f(x,y)=\sqrt{x-y+1}+\sqrt{2x+y-2}+\sqrt{2-x}$,则函数 $z=f(x,y)$ 的最大值 $M$ 与最小值 $m$ 的比 $\dfrac Mm=$ _______.

答案    $\sqrt 7$.

解析    

最大值    根据柯西不等式,有\[\begin{split} f(x,y)&=\sqrt{x-y+1}+\sqrt{2x+y-2}+\sqrt{2-x}\\ &\leqslant \sqrt 2\cdot \sqrt{(x-y+1)+(2x+y-2)}+\sqrt{2-x}\\ &=\sqrt 2\cdot \sqrt{3x-1}+\sqrt{2-x}\\ &=\sqrt{6}\cdot \sqrt{x-\dfrac 13}+\sqrt{2-x}\\ &\leqslant \sqrt{7}\cdot \sqrt{\left(x-\dfrac 13\right)+(2-x)}\\ &=\sqrt{\dfrac {35}3},\end{split}\]等号当\[\begin{cases} \dfrac{x-y+1}{2x+y-2}=1,\\ \dfrac{x-\dfrac 13}{2-x}=\dfrac 23,\end{cases}\]即 $(x,y)=\left(\dfrac{37}{21},\dfrac{13}{21}\right)$ 时取得,因此所求的最大值为 $\sqrt{\dfrac{35}3}$.

最小值    根据 $\sqrt a+\sqrt b\geqslant \sqrt{a+b}$,可得\[\begin{split} f(x,y)&=\sqrt{x-y+1}+\sqrt{2x+y-2}+\sqrt{2-x}\\ &\geqslant \sqrt{(x-y+1)+(2x+y-2)}+\sqrt{2-x}\\ &=\sqrt{3x-1}+\sqrt{2-x}\\ &\geqslant \sqrt{x-\dfrac 13}+\sqrt{2-x}\\ &\geqslant \sqrt{\left(x-\dfrac13\right)+(2-x)}\\ &=\sqrt{\dfrac 53},\end{split}\]等号当\[\begin{cases} (x-y+1)(2x+y-2)=0,\\ 3x-1=0,\end{cases}\]即 $(x,y)=\left(\dfrac 13,\dfrac 43\right)$ 时取得,因此所求最小值为 $\sqrt{\dfrac 53}$. 综上所述,最大值与最小值的比为 $\sqrt 7$.

此条目发表在每日一题分类目录,贴了标签。将固定链接加入收藏夹。

发表回复