观察下列等式: (sinπ3)−2+(sin2π3)−2=43×1×2,(sinπ5)−2+(sin2π5)−2+(sin3π5)−2+(sin4π5)−2=43×2×3,(sinπ7)−2+(sin2π7)−2+(sin3π7)−2+⋯+(sin6π7)−2=43×3×4,(sinπ9)−2+(sin2π9)−2+(sin3π9)−2+⋯+(sin8π9)−2=43×4×5,⋯⋯
照此规律, (sinπ2n+1)−2+(sin2π2n+1)−2+(sin3π2n+1)−2+⋯+(sin2nπ2n+1)−2= _______.
答案 43n(n+1).
解析 归纳,猜想(sinπ2n+1)−2+(sin2π2n+1)−2+(sin3π2n+1)−2+⋯+(sin2nπ2n+1)−2=43n(n+1).
记题中代数式为 m,θk=2kπ2n+1,其中 k=0,1,2,⋯,2n,则m=2n∑k=121−cosθk,
由 (cosθk+isinθk)2n+1=1 可得C02n+1cos2n+1θk−C22n+1cos2n−1θksin2θk+⋯+(−1)nC2n2n+1cosθksin2nθk=1,
记 21−cosθk=xk,则cosθk=1−2xk,
因此C02n+1(1−2xk)2n+1−C22n+1(1−2xk)2n−1(4xk−4x2k)+⋯+(−1)nC2n2n+1(1−2xk)(4xk−4x2k)n=1,
也即C02n+1(xk−2)2n+1−C22n+1(xk−2)2n−1(4xk−4)+⋯+(−1)nC2n2n+1(xk−2)(4xk−4)n=x2n+1k,
这是一个关于 xk 的 2n 次方程,x1,x2,⋯,x2n 是该方程的 2n 个根,其最高项系数为C02n+1C2n2n+1⋅(−2)−C22n+1C2n−12n−1⋅4=−2(2n+1)2,
而次高项系数为C02n+1C2n−12n+1(−2)2−C22n+1C2n−12n−1(−4)−C22n+1C2n−22n−1⋅(−2)⋅4+C42n+1C2n−32n−3⋅42=83n(n+1)(2n+1)2,
因此根据韦达定理,有m=2n∑k=1xk=4n(n+1)3.