每日一题[1394]构造方程

观察下列等式: (sinπ3)2+(sin2π3)2=43×1×2,(sinπ5)2+(sin2π5)2+(sin3π5)2+(sin4π5)2=43×2×3,(sinπ7)2+(sin2π7)2+(sin3π7)2++(sin6π7)2=43×3×4,(sinπ9)2+(sin2π9)2+(sin3π9)2++(sin8π9)2=43×4×5,

照此规律, (sinπ2n+1)2+(sin2π2n+1)2+(sin3π2n+1)2++(sin2nπ2n+1)2= _______.

答案    43n(n+1)

解析    归纳,猜想(sinπ2n+1)2+(sin2π2n+1)2+(sin3π2n+1)2++(sin2nπ2n+1)2=43n(n+1).

记题中代数式为 mθk=2kπ2n+1,其中 k=0,1,2,,2n,则m=2nk=121cosθk,
(cosθk+isinθk)2n+1=1 可得C02n+1cos2n+1θkC22n+1cos2n1θksin2θk++(1)nC2n2n+1cosθksin2nθk=1,
21cosθk=xk,则cosθk=12xk,
因此C02n+1(12xk)2n+1C22n+1(12xk)2n1(4xk4x2k)++(1)nC2n2n+1(12xk)(4xk4x2k)n=1,
也即C02n+1(xk2)2n+1C22n+1(xk2)2n1(4xk4)++(1)nC2n2n+1(xk2)(4xk4)n=x2n+1k,
这是一个关于 xk2n 次方程,x1,x2,,x2n 是该方程的 2n 个根,其最高项系数为C02n+1C2n2n+1(2)C22n+1C2n12n14=2(2n+1)2,
而次高项系数为C02n+1C2n12n+1(2)2C22n+1C2n12n1(4)C22n+1C2n22n1(2)4+C42n+1C2n32n342=83n(n+1)(2n+1)2,
因此根据韦达定理,有m=2nk=1xk=4n(n+1)3.

此条目发表在每日一题分类目录,贴了标签。将固定链接加入收藏夹。

发表回复