设正数x,y满足xy=1,求m=x+y[x]⋅[y]+[x]+[y]+1的取值范围.
正确答案是{12}∪[56,54).
分析与解 不妨设x⩾,当x=1时,m=\dfrac 12;
当1<x< 2时,有m=\dfrac 12\left(x+\dfrac 1x\right),取值范围是\left(1,\dfrac 54\right);
当x\geqslant 2时,设k\leqslant x<k+1,k\in\mathbb N^*且k\geqslant 2,则有m=\dfrac{x+\dfrac 1x}{k+1},考虑到对勾函数的单调性,m取值范围是\left[\dfrac{k+\dfrac 1k}{k+1},\dfrac{k+1+\dfrac{1}{k+1}}{k+1}\right),即\left[\dfrac{k^2+1}{k^2+k},\dfrac{k^2+2k+2}{k^2+2k+1}\right).
注意到一方面当k\geqslant 3时,\dfrac{k^2+1}{k^2+k}随k单调递增,且当k=2与k=3时,均有\dfrac{k^2+1}{k^2+k}=\dfrac 56;
另一方面,\dfrac{k^2+2k+2}{k^2+2k+1}随k单调递减,于是\bigcup_{k=2}^{\infty}\left[\dfrac{k^2+1}{k^2+k},\dfrac{k^2+2k+2}{k^2+2k+1}\right)=\left[\dfrac 56,\dfrac {10}{9}\right).
综上所述,所求m的取值范围是\left\{\dfrac 12\right\}\cup\left[\dfrac 56,\dfrac 54\right).