每日一题[876]焦点三角形的内心

已知椭圆$\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1$($a > b > 0$),${F_1}$、${F_2}$为其左右焦点,$P$为椭圆$C$上任意一点,$I$为$\triangle P{F_1}{F_2}$内切圆圆心,点$G$满足$\overrightarrow {P{F_1}}+ \overrightarrow {P{F_2}}= 3\overrightarrow {PG} $且$\overrightarrow {GI}= \lambda \overrightarrow {{F_1}{F_2}} $($\lambda\in {\mathbb {R}}$且$\lambda\ne 0$),则椭圆的离心率是________.


cover正确答案是$\dfrac{1}{2}$.

分析与解 如图,因为$\overrightarrow {GI}= \lambda \overrightarrow {{F_1}{F_2}} $,所以${y_G} = {y_I}$.而$G$是重心,所以$${y_G} = \dfrac{1}{3}{y_P} = r,$$而内切圆半径$$r = \dfrac{{2{S_{\triangle P{F_1}{F_2}}}}}{{P{F_1} + P{F_2} + {F_1}{F_2}}}= \dfrac{{2 \cdot \frac{1}{2} \cdot {F_1}{F_2} \cdot {y_P}}}{{2a + 2c}} = \dfrac{c}{{a + c}} \cdot {y_P},$$因此$\dfrac{1}{3}{y_P} = \dfrac{c}{{a + c}} \cdot {y_P}$,所以$\dfrac{c}{a} = \dfrac{1}{2}$.

此条目发表在每日一题分类目录,贴了标签。将固定链接加入收藏夹。

发表回复