设α∈R,若{x||sinx|α+|cosx|α=1}⊆{x∣sin4x+cos4x=1},则α的取值范围是________.
分析与解 (−∞,2)∪(2,+∞).
情形一 当α>2时,根据指数函数的性质,有|sinx|α⩽等号当且仅当\left|\sin x\right|,\left|\cos x\right|\in \{0,1\}时取得.此时有\left\{ x \,\big|\, \left|\sin x\right|^{\alpha}+\left|\cos x\right|^{\alpha}=1\right\}=\left\{x \mid \sin^4 x+\cos ^4x=1\right\}=\left\{ x\mid x=\dfrac{k\pi}2,k\in\mathbf Z\right\}.
情形二 当\alpha=2时,显然有
\left\{ x \,\big|\, \left|\sin x\right|^{\alpha}+\left|\cos x\right|^{\alpha}=1\right\}=\mathbf R.
情形三 当0<\alpha<2时,根据指数函数的性质,有\left|\sin x\right|^{\alpha}\geqslant \left|\sin x\right|^2,\left|\cos x\right|^{\alpha}\geqslant \left|\cos x\right|^2,等号当且仅当\left|\sin x\right|,\left|\cos x\right|\in \{0,1\}时取得.此时有\left\{ x \,\big|\, \left|\sin x\right|^{\alpha}+\left|\cos x\right|^{\alpha}=1\right\}=\left\{x \mid \sin^4 x+\cos ^4x=1\right\}=\left\{ x\mid x=\dfrac{k\pi}2,k\in\mathbf Z\right\}.
情形四 当\alpha\leqslant 0时,显然有
\left\{ x \,\big|\, \left|\sin x\right|^{\alpha}+\left|\cos x\right|^{\alpha}=1\right\}=\varnothing.
综上所述,\alpha的取值范围是(-\infty,2)\cup (2,+\infty).
练习 已知正整数n\geqslant 3,且\sin^n\theta+\cos^n\theta=1,则\sin\theta+\cos\theta=________.
答案 \begin{cases} \pm 1,& 2\mid n,\\ 1,& 2 \nmid n.\end{cases}
提示 由于\sin^n\theta\leqslant \sin^2\theta,\cos^n\theta\leqslant \cos^2\theta,于是\sin^n\theta+\cos^n\theta\leqslant 1.考虑到当|x|\leqslant 1且n\geqslant 3时,x^n\leqslant x^2的取等条件是x=\begin{cases} -1,1,0,& 2\mid n,\\ 1,0,&2 \nmid n,\end{cases} 又\sin^2\theta+\cos^2\theta=1,于是\sin\theta+\cos\theta=\begin{cases} \pm 1,& 2\mid n,\\ 1,& 2 \nmid n.\end{cases}