2015年高考重庆卷理科数学第22题(压轴题):
在数列\(\{a_n\}\)中,\(a_1=3\),\(a_{n+1}a_n+\lambda a_{n+1}+\mu a_n^2=0\),\(n \in \mathcal N^*\).
(1)若\(\lambda =0\),\(\mu =-2\),求数列\(\{a_n\}\)的通项公式;
(2)若\(\lambda =\dfrac{1}{k_0}\)(\(k_0\in\mathcal N^*\),\(k_0\geqslant 2\)),\(\mu =-1\),证明:\(2+\dfrac{1}{3k_0+1}<a_{k_0+1}<2+\dfrac{1}{2k_0+1}\).
(1)解 根据已知,有\[a_{n+1}a_n=2a_n^2,\]由\(a_1=3\)不难推得\[\forall n\in\mathcal N^*,a_n\neq 0,\]于是\[a_{n+1}=2a_n,n\in\mathcal N^*,\]进而\[a_n=3\cdot 2^{n-1}.\]
(2)证明 根据条件,有\[a_{n+1}=\dfrac{a_n^2}{a_n+\lambda},\]于是\[0<a_n<3,\]因此由\[a_{n+1}-a_n=-\dfrac{\lambda a_n}{a_n+\lambda}\]得\[-\dfrac{3\lambda}{3+\lambda}<a_{n+1}-a_n<0,\]累加得\[-\dfrac{3n\lambda}{3+\lambda}<a_{n+1}-3<0,\]即\[3-\dfrac{3n\lambda}{3+\lambda}<a_{n+1}<3.\]将\(\lambda =\dfrac{1}{k_0}\),\(n=k_0\)代入即得\[2+\dfrac{1}{3k_0+1}<a_{k_0+1}<3.\]
因为数列$\{a_n\}$是递减数列,所以当$n\leqslant k_0+1$时,有$$a_n\geqslant a_{k_0+1}>2,$$所以当$n\leqslant k_0+1$时,有\[a_{n+1}-a_n<-\dfrac{2k_0^{-1}}{2+k_0^{-1}},\]累加得\[a_{k_0+1}-3<-\dfrac{2}{2+k_0^{-1}},\]即\[a_{k_0+1}<2+\dfrac{1}{2k_0+1}.\]
综上,原命题得证,