设 $a_i>0$,且 $a_1a_2\cdots a_n=1$,求 $k_n$ 的最小值,使得恒有\[\dfrac{a_1a_2}{(a_1^2+a_2)(a_1+a_2^2)}+\dfrac{a_2a_3}{(a_2^2+a_3)(a_2+a_3^2)}+\cdots+\dfrac{a_na_1}{(a_n^2+a_1)(a_n+a_1^2)}\leqslant k_n.\]
2025年 12月 一 二 三 四 五 六 日 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 标签
-
近期文章
2025年 12月 一 二 三 四 五 六 日 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 标签