已知 $a,b,c>0$ 且 $abc=1$,求证:\[\dfrac{ab}{a^5+ab+b^5}+\dfrac{bc}{b^5+bc+c^5}+\dfrac{ca}{c^5+ca+a^5}\leqslant 1.\]
解析 根据排序不等式,有\[a^5+b^5\geqslant a^3b^2+a^2b^3=a^2b^2(a+b),\]于是\[\sum_{\rm cyc}\dfrac{ab}{a^5+ab+b^5}\leqslant \sum_{\rm cyc}\dfrac{ab}{a^2b^2(a+b)+ab}=\sum_{\rm cyc}\dfrac{1}{ab(a+b+c)}=\dfrac{\sum_{\rm cyc}\dfrac1{ab}}{a+b+c}=1,\]原不等式得证.