如图,四棱锥 $P-ABCD$ 的底面为正方形,$PA\perp ABCD$,$H,G$ 分别在 $PA,PC$ 上,且 $\dfrac{PH}{PA}=\lambda$,$\dfrac{PG}{PC}=\mu$,其中 $\mu>\lambda>0$,过直线 $GH$ 作平面与侧棱 $PB,PD$ 分别交于 $M,N$,截面把四棱锥分为上、下两部分,则上部分与下部分体积比值的最小值为_______.
答案 $\dfrac{2\lambda^2\mu^2}{\lambda+\mu}$.
解析 设 $\dfrac{PM}{PB}=x$,$\dfrac{PN}{PD}=y$,则\[\dfrac{V_{P-MGNH}}{V_{P-ABCD}}=\dfrac{V_{P-MGH}+V_{P-NGH}}{V_{P-ABCD}}=\dfrac{\lambda\mu x\cdot V_{P-ABC}+\lambda\mu y \cdot V_{P-ACD}}{V_{P-ABCD}}=\dfrac 12\lambda\mu (x+y),\]而\[\overrightarrow{PA}+\overrightarrow{PC}=\overrightarrow{PB}+\overrightarrow{PD}\implies \dfrac 1{\lambda}\overrightarrow{PH}+\dfrac 1{\mu}\overrightarrow{PG}=\dfrac 1x\overrightarrow{PM}+\dfrac 1y\overrightarrow{PN},\]又 $M,G,N,H$ 四点共面,因此\[\dfrac 1x+\dfrac 1y=\dfrac1{\lambda}+\dfrac1{\mu},\]于是\[\dfrac{V_{P-MGNH}}{V_{P-ABCD}}=\dfrac{\lambda\mu}{2\left(\dfrac 1{\lambda}+\dfrac1{\mu}\right)}\cdot (x+y)\left(\dfrac 1x+\dfrac 1y\right)\geqslant \dfrac{2\lambda^2\mu^2}{\lambda+\mu},\]等号当 $x=y=\dfrac{2\lambda\mu}{\lambda+\mu}$ 时取得,因此所求最小值为 $\dfrac{2\lambda^2\mu^2}{\lambda+\mu}$.