已知 $a_1>0$,$b_1>0$,且对任意 $n\in\mathbb N^{\ast}$,有 $a_{n+1}=a_n+\dfrac{1}{b_n}$,$b_{n+1}=b_n+\dfrac{1}{a_n}$,求证:$a_{50}+b_{50}>20$.
解析 根据题意,有\[(a_{n+1}+b_{n+1})^2=(a_n+b_n)^2+2(a_n+b_n)\left(\dfrac{1}{a_n}+\dfrac{1}{b_n}\right)+\left(\dfrac{1}{a_n}+\dfrac{1}{b_n}\right)^2,\]于是\[(a_{n+1}+b_{n+1})^2>(a_n+b_n)^2+8,\]从而\[(a_{50}+b_{50})^2>(a_2+b_2)^2+384,\]又\[a_2+b_2=a_1+\dfrac{1}{b_1}+b_1+\dfrac{1}{a_1}\geqslant 4,\]于是\[(a_{50}+b_{50})^2>400,\]原命题得证.