全卷共15道题,考试时间共3个小时.所有的答案都是000到999(包括000和999)之间的整数.
1、Initially Alex, Betty, and Charlie had a total of 444 peanuts. Charlie had the most peanuts, and Alex had the least. The three numbers of peanuts that each person had form a geometric progression. Alex eats 5 of his peanuts, Betty eats 9 of her peanuts, and Charlie eats 25 of his peanuts. Now the three numbers of peanuts that each person has form an arithmetic progression. Find the number of peanuts Alex had initially.
Alex,Betty和Charlie共有444颗花生,Alex的花生最少,Charlie的花生最多.三个人的花生数构成一个等比数列.Alex吃掉5颗花生,Betty吃掉9颗花生,Charlie吃掉25颗花生之后,三个人的花生数构成一个等差数列.求刚开始的时候Alex的花生数.
2、There is a 40% chance of rain on Saturday and a 30% of rain on Sunday. However, it is twice as likely to rain on Sunday if it rains on Saturday than if it does not rain on Saturday. The probability that it rains at least one day this weekend is ab, where a and b are relatively prime positive integers. Find a+b.
已知周六的降雨概率为40%,周日的降雨概率为30%,周六降雨的条件下周日降雨概率是周六不降雨的条件下周日降雨概率的2倍.设周六周日两天至少有一天下雨的概率为ab,其中a,b为互质的正整数.求a+b的值.
3、Let x,y and z be real numbers satisfying the system log2(xyz−3+log5x)=5log3(xyz−3+log5y)=4log4(xyz−3+log5z)=4.
已知实数x,y,z满足方程组{log2(xyz−3+log5x)=5,log3(xyz−3+log5y)=4,log4(xyz−3+log5z)=4.
4、An a×b×c rectangular box is built from a⋅b⋅c unit cubes. Each unit cube is colored red, green, or yellow. Each of the a layers of size 1×b×c parallel to the (b×c)-faces of the box contains exactly 9 red cubes, exactly 12 green cubes, and some yellow cubes. Each of the b layers of size a×1×c parallel to the (a×c)-faces of the box contains exactly 20 green cubes, exactly 25 yellow cubes, and some red cubes. Find the smallest possible volume of the box.
a⋅b⋅c个体积为1的单位正方体拼成一个尺寸为a×b×c的长方体,每个单位正方体的表面都涂上了红色、黄色或者绿色当中的某一种颜色.和“b×c面”平行(尺寸为1×b×c)的每一个“a层”都恰好有9个红色单位正方体、12个绿色单位正方体以及若干个黄色单位正方体;和“a×c面”平行(尺寸为a×1×c)的每一个“b层”都恰好有25个黄色单位正方体、20个绿色单位正方体以及若干个红色单位正方体.求该长方体体积的最小值.
5、Triangle ABC0 has a right angle at C0. Its side lengths are pairwise relatively prime positive integers, and its perimeter is p. Let C1 be the foot of the altitude to ¯AB, and for n⩾2, let Cn be the foot of the altitude to ¯Cn−2B in △Cn−2Cn−1B. The sum ∞∑n=1Cn−1Cn=6p. Find p.
直角三角形ABC0(C0为直角)的三边长是两两互质的正整数,周长为p.作C0C1⊥AB于C1,当n⩾2时,作Cn−1Cn⊥BCn−2于Cn.已知∞∑n=1Cn−1Cn=6p,求p的值.
6、For polynomial P(x)=1−13x+16x2, define Q(x)=P(x)P(x3)P(x5)P(x7)P(x9)=50∑i=0aixi.
已知多项式P(x)=1−13x+16x2,定义Q(x)=P(x)P(x3)P(x5)P(x7)P(x9)=50∑i=0aixi.
设50∑i=0|ai|=mn,其中m,n为互质的正整数.求m+n的值.
7、Squares ABCD and EFGH have a common center and ¯AB∥¯EF. The area of ABCD is 2016, and the area of EFGH is a smaller positive integer. Square IJKL is constructed so that each of its vertices lies on a side of ABCD and each vertex of EFGH lies on a side of IJKL. Find the difference between the largest and smallest possible integer values of the area of IJKL.
正方形ABCD的面积为2016,正方形IJKL的4个顶点分别落在正方形ABCD的4条边上,其面积为正整数.正方形EFGH的4个顶点分别落在正方形IJKL的4条边上,其中心与正方形ABCD的中心重合,EF∥AB,且其面积是一个小于2016的正整数.求正方形IJKL面积的最大值与最小值的差.
8、Find the number of sets {a,b,c} of three distinct positive integers with the property that the product of a,b, and c is equal to the product of 11,21,31,41,51, and 61.
a,b,c是三个不同的正整数,abc=11⋅21⋅31⋅41⋅51⋅61.求所有满足要求的集合{a,b,c}的个数.
9、The sequences of positive integers 1,a2,a3,⋯ and 1,b2,b3,⋯ are an increasing arithmetic sequence and an increasing geometric sequence, respectively. Let cn=an+bn. There is an integer k such that ck−1=100 and ck+1=1000. Find ck.
1,a2,a3,⋯是一个各项均为正整数的单调递增的等差数列,1,b2,b3,⋯是一个各项均为正整数的单调递增的等比数列.令cn=an+bn,已知存在整数k满足ck−1=100,ck+1=1000,求ck的值.
10、Triangle ABC is inscribed in circle ω. Points P and Q are on side ¯AB with AP<AQ. Rays CP and CQ meet ω again at S and T (other than C), respectively. If AP=4,PQ=3,QB=6,BT=5, and AS=7, then ST=mn, where m and n are relatively prime positive integers. Find m+n.
三角形ABC内接于圆ω,P,Q是线段AB上的点,且AP<AQ.射线CP,CQ分别交圆ω于点S,T.如果AP=4,PQ=3,QB=6,BT=5,AS=7,设ST=mn,其中m,n为互质的正整数.求m+n的值.
11、For positive integers N and k, define N to be k-nice if there exists a positive integer a such that ak has exactly N positive divisors. Find the number of positive integers less than 1000 that are neither 7-nice nor 8-nice.
对于正整数N,k,若存在正整数a,使得ak恰好有N个正因数,则称N是一个“k-好数”.求小于1000的正整数中,既不是“7-好数”又不是“8-好数”的正整数的个数.
12、The figure below shows a ring made of six small sections which you are to paint on a wall. You have four paint colors available and will paint each of the six sections a solid color. Find the number of ways you can choose to paint each of the six sections if no two adjacent section can be painted with the same color.
用4种不同的颜色给下图中的6个扇环染色,每个扇环只染一种颜色,相邻的扇环染不同的颜色,求所有染色的方法数.
13、Beatrix is going to place six rooks on a 6×6 chessboard where both the rows and columns are labelled 1 to 6; the rooks are placed so that no two rooks are in the same row or the same column. The value of a square is the sum of its row number and column number. The score of an arrangement of rooks is the least value of any occupied square. The average score over all valid configurations is pq, where p and q are relatively prime positive integers. Find p+q.
Beatrix在一个6×6的棋盘上放了6枚棋子,任意两枚棋子既不在同一行也不在同一列.定义某一枚棋子的分值为其所在位置的行数与列数之和,定义6枚棋子的总分值为这6枚棋子分值的最小值.将所有排列中6枚棋子的总分值的平均数记为pq,其中p,q为互质的正整数.求p+q的值.
14、Equilateral △ABC has side length 600. Points P and Q lie outside of the plane of △ABC and are on the opposite sides of the plane. Furthermore, PA=PB=PC, and QA=QB=QC, and the planes of △PAB and △QAB form a 120∘ dihedral angle (The angle between the two planes). There is a point O whose distance from each of A,B,C,P and Q is d. Find d.
等边三角形△ABC的边长为600.点P,Q在平面ABC的外面,并且分别位于平面ABC的两侧.PA=PB=PC,QA=QB=QC,二面角P−AB−Q的大小为120∘.若点O到点A,B,C,P,Q的距离均等于d,求d的值.
15、For 1⩽i⩽215 let ai=12i and a216=12215. Let x1,x2,⋯,x216 be positive real numbers such that 216∑i=1xi=1 and ∑1⩽i<j⩽216xixj=107215+216∑i=1aix2i2(1−ai).
已知ai=12i(i=1,2,⋯,215),a216=12215.正实数x1,x2,⋯,x216满足216∑i=1xi=1,∑1⩽i<j⩽216xixj=107215+216∑i=1aix2i2(1−ai).
设x2的最大值为mn,其中m,n为互质的正整数.求m+n的值.
参考答案
1、108.
由题意,设刚开始的时候Alex的花生数为x,Betty的花生数为xq,Charlie的花生数为xq2,则
{x+xq+xq2=444,x−5+xq2−25=2(xq−9),
解得{x=108,q=43.
2、107.
设事件A表示周六降雨,事件B表示周日降雨,则P(A)=0.4,P(B)=0.3,故P(B|A)=P(AB)P(A)=2P(B|¯A)=2P(¯AB)P(¯A),
解得P(¯AB)=970.
所以周六周日两天至少有一天下雨的概率为P(AB)+P(A¯B)+P(¯AB)=P(A)+P(¯AB)=3770.
3、265.
设a=log5x,b=log5y,c=log5z,则{5a+b+c+a=35,5a+b+c+b=84,5a+b+c+c=259,
以上三式相加,可得3⋅5a+b+c+(a+b+c)=378,所以a+b+c=3,进而可解得{a=−90,b=−41,c=134.
4、180.
设每一个“a层”都恰好有x个黄色单位正方体,每一个“b层”都恰好有y个红色单位正方体.由题意,可得{9a=yb,xa=25b,12a=20b,
故该长方体的体积V=36a⩾180,易知,等号可以取到.
5、182.
设C0C1的长为h.因为∞∑n=1Cn−1Cn=6p,所以h1−sinA=6h(1sinA+1cosA+tanA+cotA),
所以p=13+84+85=182.
6、275.
50∑i=0|ai|=Q(−1)=(32)5=24332.
7、840.
由题意,设正方形ABCD的面积为S1=2016,正方形IJKL的面积为S2=2016q,正方形EFGH的面积为S3=2016q2,其中12⩽q<1.
显然,正方形IJKL面积的最小值为1008.
因为S1S3=122⋅14S3=S22为完全平方数,故S3=14m2,其中m为正整数.
所以S2=12⋅14m,由此可得q=m12⩽1112.
经检验,当q=1112时满足题意,所以正方形IJKL面积的最大值为1848.
8、728.
由题意,abc=11⋅3⋅7⋅31⋅41⋅3⋅17⋅61.先考虑11,7,31,41,17,61这6个素数,它们“分配”给a,b,c的方式共有36=729种.
接下来考虑两个3,它们“分配”给a,b,c的方式共有C24=6种.
导致a,b,c三个数中有相同数的方法共有2C23=6(有两个数等于1或有两个数等于3)种.
考虑到集合元素的互异性和无序性,所有满足要求的集合{a,b,c}的个数应为36⋅C24−2C23A33=728.
9、262.
由题意,设an=1+(n−1)d,其中d是正整数;bn=qn−1,其中q是大于等于2的正整数.
若q⩾10,容易推出与题意不符.
若q⩽9,逐一验证可知,当且仅当数列{an}为1,91,181,271,⋯,数列{bn}为1,9,81,729,⋯,k=3时满足题意.
10、043.
方法一
如图,由射影几何中的Chasles定理可知,(CA,CT;CS,CB)=(A,T;S,B)=(A,Q;P,B),
方法二
如图,因为AP⋅QB⋅STAS⋅BT⋅PQ=APAS⋅QBBT⋅STPQ=APAS⋅QCCA⋅STPQ=APCA⋅QCPQ⋅STAS=sin∠ACPsin∠APC⋅sin∠CPQsin∠PCQ⋅sin∠PCQsin∠ACP=1,
所以ST=358
11、749.
易知,k-好数是模k余1的数.
在小于1000的正整数中,“7-好数”有1,8,⋯,995,共143个;“8-好数”有1,9,⋯,993,共125个;“56-好数”有1,57,⋯,953,共18个.
所以在小于1000的正整数中,既不是“7-好数”又不是“8-好数”的正整数的个数为999−143−125+18=749.
12、732.
一般的,我们来考虑用k种不同的颜色给n个扇环染色的方法数an.
方法一an+an−1=k⋅(k−1)n−1,a1=0,a2=k(k−1),
解得an=(k−1)n+(k−1)⋅(−1)n.
方法二an=(k−2)an−1+(k−1)an−2,a1=0,a2=k(k−1),
解得an=(k−1)n+(k−1)⋅(−1)n.
13、371.
将6枚棋子的总分值记为随机变量X.
(1)X⩾2的情况有6!=720种.
(2)X⩾3的情况有5⋅5!=600种.
(3)X⩾4的情况有42⋅4!=384种.
(4)X⩾5的情况有33⋅3!=162种.
(5)X⩾6的情况有24⋅2!=32种.
(6)X=7的情况有1种.
综上所述,所有排列中6枚棋子的总分值的平均数为E(X)=∞∑k=1P(X⩾k)=720+720+600+384+162+32+16!=29180.
注 若X是取非负整数值的随机变量,则E(X)=∞∑k=1P(X⩾k).
14、450.
设G是△ABC的中心,M是线段AC的中点,则∠PAQ=90∘,∠PMQ=120∘.
设GM=a=100√3,PM=x,QM=y.
在△PMQ中,有PQ2=x2+y2+xy,
在△PAQ中,有PQ2=AP2+AQ2=2AM2+PM2+QM2=6a2+x2+y2,
故xy=6a2.
在△PMQ中,由2S△PMQ=xysin∠PMQ=PQ⋅GM,
可知PQ=3√3a=900.所以d=12PQ=450.
15、863.
由题意,1=(216∑i=1xi)2=216∑i=1x2i+2∑1⩽i<j⩽216xixj=216∑i=1x2i+214215+216∑i=1aix2i1−ai=214215+216∑i=1x2i1−ai,
所以216∑i=1x2i1−ai=1215.
由柯西不等式,1=216∑i=1(1−ai)⋅216∑i=1x2i1−ai⩾(216∑i=1xi)2=1,
故x11−a1=x21−a2=⋯=x2161−a216=216∑i=1xi216∑i=1(1−ai)=1215,
所以x2=1−a2215=3860.