2011年高考数学四川卷理科数学第22题(压轴题):
已知f(x)=23x+12,h(x)=√x.
(1)设函数F(x)=f(x)−h(x),求F(x)的单调区间与极值;
(2)设a∈R,解关于x的方程log4[32f(x−1)−34]=log2h(a−x)−log2h(4−x);
(3)试比较f(100)h(100)−100∑k=1h(k)与16的大小关系.
(1)解 函数F(x)的导函数F′(x)=4√x−36√x,x>0,于是F(x)的单调递减区间是(0,916);F(x)单调递增区间是(916,+∞).当x=916时,函数F(x)取得极小值18,函数F(x)没有极大值.
(2)解 原方程等价于12log2(x−1)+log2√4−x=log2√a−x,即{1<x<4,x<a,a=−x2+6x−4,画出函数y=−x2+6x−4和y=x的图象,如图.于是可得,当1<a⩽4或a=5时,原方程有一解x=3-\sqrt {5-a};4<a<5时,原方程有两解x=3\pm\sqrt{5-a};当a\leqslant 1或a>5时,原方程无解.
(3)解 令\begin{split}{S_n} &= f\left( n \right) \cdot g\left( n \right) - \sum\limits_{k = 1}^n {h\left( k \right)}\\&= \left( {\dfrac{2}{3}n + \dfrac{1}{2}} \right) \cdot \sqrt n - \sum\limits_{k = 1}^n {\sqrt k },\end{split}则{S_1} = \left( {\dfrac{2}{3} + \dfrac{1}{2}} \right) \cdot 1 - 1 = \dfrac{1}{6},事实上,有\begin{split}{S_2} &= \left( {\dfrac{2}{3} \cdot 2 + \dfrac{1}{2}} \right) \cdot \sqrt 2 - 1 - \sqrt 2\\& = \dfrac{{5\sqrt 2 }}{6} - 1 \\&> \dfrac{7}{6} - 1 = \dfrac{1}{6},\end{split}
考虑证明{S_n}单调递增.\begin{split}{S_{n + 1}} - {S_n} &= \left[ {\dfrac{2}{3}\left( {n + 1} \right) + \dfrac{1}{2}} \right]\sqrt {n + 1} - \sum\limits_{k = 1}^{n + 1} {\sqrt k } - \left( {\dfrac{2}{3}n + \dfrac{1}{2}} \right)\sqrt n + \sum\limits_{k = 1}^n {\sqrt k } \\& = \left( {\dfrac{2}{3}n + \dfrac{1}{6}} \right)\sqrt {n + 1} - \left( {\dfrac{2}{3}n + \dfrac{1}{2}} \right)\sqrt n \\& = \dfrac{1}{6}\left[ {\left( {4n + 1} \right)\sqrt {n + 1} - \left( {4n + 3} \right)\sqrt n } \right]\\& = \dfrac{1}{6}\left( {\sqrt {16{n^3} + 24{n^2} + 9n + 1} - \sqrt {16{n^3} + 24{n^2} + 9n} } \right)\\& > 0,\end{split}因此当n \geqslant 2时,{S_n} > {S_1} = \dfrac{1}{6}.
注 (3)的另解,利用加强的积分放缩,如图.
可得\begin{split}&\qquad f(100)h(100)-\sum_{k=1}^{100}{h(k)}-\frac 16\\&=\frac{1343}{2}-\sum_{k=1}^{100}\sqrt k\\&>\frac{1343}{2}-\left[\int_{1}^{100}\sqrt x{\rm d}x+\frac 12\left(\sqrt{100}+1\right)\right]\\&=\frac{1343}{2}-\left[\frac 23\left( {100}^{1.5}-1\right)+\frac {11}2\right]\\&=0.\end{split}
Pingback引用通告: 证明级数不等式的积分放缩法 | Math173
Pingback引用通告: 每日一题[149] 裂项求和 | Math173