用拉格朗日乘数法求代数式最值

已知$a,b,c>0$,$a+b^2+c^3=3$,求$3a^2+4b^3+9c^4$的最小值.


正确答案是$\dfrac{25\sqrt 5-29}2$.

 用拉格朗日乘数法,有\[F(a,b,c,\lambda )= 3a^2+4b^3+9c^4+\lambda\left(a+b^2+c^3-3\right),\]于是解方程组\[\begin{cases}6a+\lambda=0,\\ 12b^2+2b\lambda =0,\\ 36c^3+3c^2\lambda =0, \\ a+b^2+c^3-3=0,\end{cases}\]可得\[a=b=2c=\sqrt 5-1,\]此时$3a^2+4b^3+9c^4$取得最小值$\dfrac{25\sqrt 5-29}2$.

此条目发表在解题展示分类目录。将固定链接加入收藏夹。

用拉格朗日乘数法求代数式最值》有一条回应

  1. trivium说:

    什么是拉格朗日乘数法啊?

发表回复