设an=n∑k=11k−lnn.
(1) 求证:limn→+∞an存在;
(2) 记limn→+∞an=C,讨论级数+∞∑n=1(an−C)的敛散性.
分析与解 (1) 我们熟知当x>0且x≠1时,有lnx<x−1,将x=nn+1代入,有−lnn+1n<−1n+1,于是an+1−an=1n+1−lnn+1n<0,因此{an}单调递减.又n∑k=11k=n−1∑k=11k+1n⩾于是\{a_n\}有下界\dfrac 12.于是\displaystyle \lim_{n\to +\infty}a_n存在.
(2) 考虑到a_n=1+\sum_{k=2}^n\left(\dfrac 1k-\ln\dfrac{k}{k-1}\right),而该级数收敛于C,且a_n-C>0,考虑a_n-C=\sum_{k=n+1}^{+\infty}\left(\ln\dfrac{k}{k-1}-\dfrac 1k\right).我们熟知,当x>1时,有\ln x>\dfrac{2(x-1)}{x+1},令x=\dfrac{k}{k-1},则有\ln\dfrac{k}{k-1}>\dfrac{2}{2k-1},于是a_n-C>\sum_{k=n+1}^{+\infty}\left(\dfrac{2}{2k-1}-\dfrac 1k\right)=\sum_{k=n+1}^{+\infty}\dfrac{1}{k(2k-1)}>\dfrac 12\sum_{k=n+1}^{+\infty}\left(\dfrac 1{k-\dfrac 12}-\dfrac 1{k+\dfrac 12}\right)=\dfrac{1}{2n+1}.由于级数\displaystyle \sum_{n=1}^{+\infty}\dfrac{1}{2n+1}发散,所以级数\displaystyle \sum_{n=1}^{+\infty}\left(a_n-C\right)发散.
注 有趣的是,考虑到b_n=a_n-\dfrac{1}{2n},则\lim_{n\to+\infty}b_n=\lim_{n\to+\infty}a_n=C.而b_{n+1}-b_n=\dfrac{1}{n+1}-\ln\dfrac{n+1}{n}+\dfrac{1}{2n(n+1)}=\dfrac{2n+1}{2n(n+1)}-\ln\left(1+\dfrac 1n\right).考虑函数\varphi(x)=\ln x-\dfrac{x^2-1}{2x},在x>1时,有\varphi(x)<0.令x=1+\dfrac 1n,于是就得到了b_{n+1}-b_n>0,进而\{b_n\}单调递增.