[竞赛] 三角不等式一则

 在三角形\(ABC\)中,\(5\cos A+6\cos B+7\cos C=9\),求证:\[\sin^2\dfrac{A}{2}+\sin^3\dfrac{B}{2}+\sin^4\dfrac{C}{2}\geqslant \dfrac{7}{16}.\]


注意到取等条件为\(A=B=C=\dfrac{\pi}3\),于是对\(\sin^3\dfrac{B}{2}\)进行放缩:\[\dfrac 12\sin^3\dfrac B2+\dfrac 12\sin^3\dfrac B2+\dfrac 1{16}\geqslant \dfrac 34\sin^2\dfrac B2,\]即\[\sin^3\dfrac B2\geqslant \dfrac 34\sin^2\dfrac B2-\dfrac 1{16}.\]类似的,对\(\sin^4\dfrac{C}{2}\)进行放缩:\[\sin^4\dfrac{C}{2}+\dfrac 1{16}\geqslant \dfrac 12\sin^2\dfrac C2,\]即\[\sin^4\dfrac{C}{2}\geqslant \dfrac 12\sin^2\dfrac C2-\dfrac 1{16}.\]于是\[\sin^2\dfrac{A}{2}+\sin^3\dfrac{B}{2}+\sin^4\dfrac{C}{2}\geqslant \sin^2\dfrac A2+\dfrac 34\sin^2\dfrac B2+\dfrac 12\sin^2\dfrac C2-\dfrac 2{16}.\] 根据已知\[5\cos A+6\cos B+7\cos C=9,\]由二倍角公式可得\[5\sin^2\dfrac A2+6\sin^2\dfrac B2+7\sin^2\dfrac C2=\dfrac 92,\] 引入参数,由\[5\lambda\sin^2\dfrac A2+6\lambda\sin^2\dfrac B2+7\lambda\sin^2\dfrac C2-\dfrac 92\lambda=0,\]带入上面得到的结果,有\[\begin{split}&\quad\sin^2\dfrac{A}{2}+\sin^3\dfrac{B}{2}+\sin^4\dfrac{C}{2}\\&\geqslant \left(1+5\lambda\right)\sin^2\dfrac A2+\left(\dfrac 34+6\lambda\right)\sin^2\dfrac B2+\left(\dfrac 12+7\lambda\right)\sin^2\dfrac C2-\dfrac 2{16}-\dfrac 92\lambda,\end{split}\] 尝试\[1+5\lambda=\dfrac 34+6\lambda=\dfrac 12+7\lambda,\]解得\[\lambda=\dfrac 14,\]于是有\[\sin^2\dfrac{A}{2}+\sin^3\dfrac{B}{2}+\sin^4\dfrac{C}{2}\geqslant \dfrac 94\sum_{cyc}\sin^2\dfrac A2-\dfrac {20}{16},\] 我们熟知\[\sum_{cyc}\sin^2\dfrac A2\geqslant \dfrac 34,\]于是原不等式得证.

此条目发表在解题展示分类目录,贴了标签。将固定链接加入收藏夹。

发表回复