已知\(x\in \left(0,\dfrac \pi 2\right)\),求证:\(\sin {\sqrt x}<\sqrt {\sin x}\).
令\(t=\sqrt x\),则\(t\in \left(0,\sqrt {\dfrac \pi 2}\right)\),欲证不等式即\[\sin^2 t<\sin {t^2}.\]
第一种情况,若\(1\leqslant t \leqslant \sqrt{\dfrac \pi 2}\),则\(t^2\geqslant t\),从而\[\sin {t^2} \geqslant \sin t > \sin ^2 t.\]
第二种情况,若\(0<t<1\),则\(t^2<t\).令\(f(t)=\sin {t^2}-\sin ^2 t\),则\[f'(t)=2t\cos t^2 - 2\sin t \cos t.\]
由于\(t>\sin t\)且\(\cos t^2>\cos t\),于是\(f'(t)>0\),又\(f(0)=0\),因此原不等式成立.
综上所述,原不等式得证.