一类收敛级数的求和方法

2008年全国高中数学联赛江苏初赛涉及到了这样一个级数:\[\dfrac{1}{n+1}+\dfrac{1}{n+2}+\cdots+\dfrac{1}{2n},\]原题是证明\(\dfrac{25}{36}\)是它的上界(证明方法是放缩裂项).事实上,考虑到该级数即\[\sum_{k=1}^{2n}{\dfrac 1k}-\sum_{k=1}^{n}{\dfrac 1k},\]于是当\(n\to \infty\)时,该级数收敛于\[\lim_{n\to \infty}{\left(\sum_{k=1}^{2n}{\dfrac 1k}-\sum_{k=1}^{n}{\dfrac 1k}\right)}=\ln 2.\]这就相当于得到了\[\sum_{n=1}^{\infty}{\dfrac{1}{2n(2n-1)}}=\ln 2.\]

但是这一方法无法求如下的收敛级数的极限:\[\sum_{n=1}^{\infty}\dfrac{1}{3n(3n+1)}.\]那么对此类无法直接裂项的收敛级数,该如何处理呢?


这需要构造和函数\[S(x)=\sum_{n=1}^{\infty}\left(\dfrac{x^{3n}}{3n}-\dfrac{x^{3n+1}}{3n+1}\right),\]此时\[\begin{split}S'(x)&=\sum_{n=1}^{\infty}\left(x^{3n-1}-x^{3n}\right)\\&=\dfrac{x^2}{1-x^3}-\dfrac{x^3}{1-x^3}\\&=\dfrac{x^2}{1+x+x^2}\\&=1-\dfrac{1+x}{1+x+x^2}\\&=1-\dfrac{\dfrac 12(2x+1)}{1+x+x^2}-\dfrac{\dfrac 12}{1+x+x^2}\\&=1-\dfrac{\dfrac 12(2x+1)}{1+x+x^2}-\dfrac{\dfrac{1}{\sqrt 3}\cdot\dfrac{2}{\sqrt 3}}{\left(\dfrac 2{\sqrt 3}x+\dfrac 1{\sqrt 3}\right)^2+1},\end{split}\]于是\[S(x)=\int{S'(x)}{\mathrm d}x=x-\dfrac 12\ln{(1+x+x^2)}-\dfrac 1{\sqrt 3}\arctan{\left(\dfrac 2{\sqrt 3}x+\dfrac 1{\sqrt 3}\right)}+C.\]考虑到\(S(0)=0\),于是\[C=\dfrac{1}{\sqrt 3}\arctan\dfrac 1{\sqrt 3}=\dfrac{\pi}{6\sqrt 3}.\]

这样就有\[\sum_{n=1}^{\infty}\dfrac{1}{3n(3n+1)}=\lim_{x\to 1}S(x)=3-\dfrac 32\ln 3-\dfrac{\pi}{2\sqrt 3}.\]

 构造和函数处理\(\sum\limits_{n=1}^{\infty}{\dfrac{1}{2n(2n-1)}}\)留给读者作为练习.

此条目发表在方法技巧分类目录,贴了标签。将固定链接加入收藏夹。

发表回复