『3758108』设正实数 x,y,z 满足 x3+y3+z3=5xyz,求f=(x+y+z)(1x+1y+1z)的最大值与最小值.
解法一(post by tzy)
不妨设 p=x+y+z=1,q=xy+yz+zx,r=xyz,则由x3+y3+z3−3xyz=(x+y+z)(x2+y2+z2−xy−yz−zx)可得2r=1−3q⟺q=1−2r3.而由 (x−y)2(y−z)2(z−x)2⩾,可得\sum_{\rm cyc}\left(x^4y^2+x^2y^4+2x^3y^2z+2x^2y^3z-2x^3y^3-2x^4yz-2x^2y^2z^2\right),也即(p^2q^2-2q^3+4pqr-3r^2-2p^3r)+2r(pq-3r)-2(q^3-3pqr+3r^2)-2r(p^3-3pq+3r)-6r^2\geqslant 0,也即p^2q^2-4q^3-4p^3r+18pqr-27r^2\geqslant 0,将 p=1,q=\dfrac{1-2r}3 代入,可得-1+66r-1089r^2+32r^3\geqslant 0\iff 17-12\sqrt 2\leqslant r\leqslant \dfrac{1}{32},而原式f=\dfrac{1}{3r}-\dfrac 23,于是当 r=17-12\sqrt 2,即 (x,y,z)=\left(\sqrt 2-1,\sqrt 2-1,3-2\sqrt 2\right)_{\rm cyc} 时,f 取得最大值 5+4\sqrt 2;当 r=\dfrac{1}{32},即 (x,y,z)=\left(\dfrac 14,\dfrac 14,\dfrac 12\right)_{\rm cyc} 时 f 取得最小值 10.
解法二(post by louxin2020)
不妨设 x+y+z=1,x,y,z\in (0,1),则x^3+y^3+z^3=5xyz\iff (x+y+z)(x^2+y^2+z^2-xy-yz-zx)=2xyz,即1-3\big(xy+(1-z)z\big)=2xyz\iff xy=\dfrac{3z^2-3z+1}{3+2z},又xy\leqslant \left(\dfrac{x+y}2\right)^2=\dfrac{(1-z)^2}{4},于是\dfrac{3z^2-3z+1}{3+2z}\leqslant \dfrac{(1-z)^2}{4}\iff 2z^3-13z^2+8z-1\geqslant 0,即\left(z-\dfrac 12\right)\big(z-(3-2\sqrt 2)\big)\big(z-(3+2\sqrt 2)\big)\geqslant 0,又 z\in (0,1),从而 3-2\sqrt 2\leqslant z\leqslant \dfrac 12.而f=\dfrac 1x+\dfrac 1y+\dfrac 1z=\dfrac{xy+yz+zx}{xyz}=\dfrac{1-2xyz}{3xyz}=\dfrac 13\left(\dfrac1{xyz}-2\right),于是设 g=\dfrac{1}{xyz},则g(z)=\dfrac{3+2z}{z(3z^2-3z+1)},进而g'_z=\dfrac{-3(4z-1)\big(z-(\sqrt 2-1)\big)\big(z-(-\sqrt 2-1)\big)}{z^2(1-3z+3z^2)^2},从而 g(z) 在 z\in\left[3-2\sqrt 2,\dfrac 14\right] 上单调递增,在 \left[\sqrt 2-1,\dfrac 12\right] 上单调递减,而\begin{split} g\left(3-2\sqrt 2\right)=17+12\sqrt 2,\\ g\left(\sqrt 2-1\right)=17+12\sqrt 2,\\ g\left(\dfrac 14\right)=32,\end{split}因此可得当 z=3-2\sqrt 2 或 \sqrt 2-1 时,即 (x,y,z)=\left(\sqrt 2-1,\sqrt 2-1,3-2\sqrt 2\right)_{\rm cyc} 时,f 取得最大值为 5+4\sqrt 2;当 z=\dfrac 14 时,即 (x,y,z)=\left(\dfrac 14,\dfrac 14,\dfrac 12\right)_{\rm cyc} 时,f 取得最小值为 10.
不妨设x+y+z=1.xyz=r. \\
则条件等价于xy+yz+zx= \frac{1-2r}{3}\\
于是r< \frac{1}{2}\\
又(x-y)^2 (y-z)^2 (z-x)^2 \geq 0,整理得\\
\frac{1}{32} \leq r \leq 17+12 \sqrt{2}. \\
于是\frac{1}{32} \leq r < \frac{1}{2}.\\
而原式= \frac{1}{3r} - \frac{2}{3}\\
于是原式的范围为(0,10]
之前的答案有误.\\ 不妨设x+y+z=1.xyz=r. \\ 则条件等价于xy+yz+zx= \frac{1-2r}{3}\\ 又(x-y)^2 (y-z)^2 (z-x)^2 \geq 0,整理得\\ \frac{1}{32} \geq r \geq 17-12 \sqrt{2}. \\ 而原式= \frac{1}{3r} - \frac{2}{3}\\ 于是原式的范围为[10,5+4 \sqrt{2}]\\ x=y=1/4,z=1/2时原式=10\\ x=y= \sqrt{2}-1,z=3-2 \sqrt{2}时原式=5+4 \sqrt{2}\\ (新答案依然可能有误,欢迎指正.)
完美解决~