1.已知点$P$是椭圆$\dfrac{x^2}{16}+\dfrac{y^2}{8}=1$上的一个动点,$F_1,F_2,O$分别为椭圆的左焦点、右焦点和中心,过$F_1$作$\angle F_1PF_2$的角平分线的垂线,垂足为$M$,则$OM$的取值范围是_______.
2.已知函数$f(x)=ax^2+(2a-1)x-3$($a\ne 0$)在区间$\left[-\dfrac 32,2\right]$上的最大值是$1$,则实数$a$的值是_______.
3.已知数列$\{a_n\}$满足$a_1=3$,$a_{n+1}=\dfrac{2n-1}{2n}a_n+\dfrac 1{2n}+3$,求数列$\{a_n\}$的通项公式.
4.设$a>0$,$x_1>0$,且$x_{n+1}=\dfrac 14\left(3x_n+\dfrac a{x_n^3}\right)$,$n\in\mathbb N^*$,则数列$\{x_n\}$是否收敛?
5.设方程$x^6+x^4+x^3+x^2+1=0$的所有虚部为正数的复根的乘积为$z$,求$z$的值(写成三角形式).
6.已知$f(x)=\dfrac{x^2\tan x}{\tan x-x}$,求证:$f(x)$在$\left(0,\dfrac{\pi}2\right)$上单调递减.
7.已知$n\in\mathbb N^*$,求证:$\ln \left(2^2+1\right)+\ln \left(3^2+1\right)+\cdots +\ln \left(n^2+1\right)<1+2\ln n!$.
参考答案
1.$\left[0,2\sqrt 2\right)$.
作$F_1$关于$\angle F_1PF_2$的角平分线的对称点$F_1'$,则$OM=\dfrac 12F_2F_1'=\dfrac 12|PF_1-PF_2|$,取值范围是$\left(0,2\sqrt 2\right)$.
2.$\dfrac 34$或$-\dfrac{3+2\sqrt 2}2$.
根据题意,下列三个等式$$f\left(-\dfrac 32\right)=1,f(2)=1,\dfrac{-12a-(2a-1)^2}{4a}=1,$$中必然有一个成立,于是$a\in\left\{-\dfrac{10}3,\dfrac 34,\dfrac{-3\pm 2\sqrt 2}2\right\}$.经验证,可得实数$a$的值为$\dfrac 34$或$-\dfrac{3+\sqrt 2}2$.
3.根据题意,有\[2na_{n+1}=(2n-1)a_n+1+6n,\]即\[2n(a_{n+1}-1)=(2n-1)(a_n-1)+6n,\]也即\[2n\left[a_{n+1}-1-2(n+1)\right]=(2n-1)\left(a_n-1-2n\right),\]由于$a_1=3$,于是\[a_{n+1}-1-2(n+1)=0,\]从而$a_n=2n+1,n\in\mathbb N^*$为所求.
4.易得$x_n>0$,$n\in\mathbb N^*$,于是由均值不等式可得$$x_{n+1}=\dfrac 14\left(x_n+x_n+x_n+\dfrac a{x_n^3}\right)\geqslant \sqrt[4]{a},$$归纳易得$x_n\geqslant \sqrt[4]a$,$n\in\mathbb N^*$,$n\geqslant 2$.又$$\dfrac{x_{n+1}}{x_n}=\dfrac 14\left(3+\dfrac{a}{x_n^4}\right)\leqslant 1,$$于是数列$\{x_n\}$单调递减有下界,因此数列$\{x_n\}$收敛.容易计算得数列$\{x_n\}$收敛于$\sqrt[4]a$.
5.观察次数,可得方程等价于$$x^3+x+1+\dfrac 1x+\dfrac{1}{x^3}=0,$$也即$$\left(x+\dfrac 1x\right)^3-2\left(x+\dfrac 1x\right)+1=0,$$也即$$\left(x+\dfrac 1x-1\right)\left[\left(x+\dfrac 1x\right)^2+\left(x+\dfrac 1x\right)-1\right]=0,$$也即$$\left(x^2-x+1\right)\left(x^4+x^3+x^2+x+1\right)=0,$$因此该方程的所有复数根为方程$$\left(x^3+1\right)\left(x^5-1\right)=0$$的所有虚根,为$$\cos\dfrac{\pi}3+{\rm i}\sin\dfrac{\pi}3,\cos\dfrac{5\pi}3+{\rm i}\sin\dfrac{5\pi}3,\cos\dfrac{2\pi}5+{\rm i}\sin\dfrac{2\pi}5,\cos\dfrac{4\pi}5+{\rm i}\sin\dfrac{4\pi}5,\cos\dfrac{6\pi}5+{\rm i}\sin\dfrac{6\pi}5,\cos\dfrac{8\pi}5+{\rm i}\sin\dfrac{8\pi}5,$$进而可得$$z=\cos\left(\dfrac{\pi}3+\dfrac{2\pi}5+\dfrac{4\pi}5\right)+{\rm i}\sin\left(\dfrac{\pi}3+\dfrac{2\pi}5+\dfrac{4\pi}5\right)=\cos\dfrac{23\pi}{15}+{\rm i}\sin\dfrac{23\pi}{15}.$$
6.根据题意,有$$f(x)=\dfrac{x^2\sin x}{\sin x-x\cos x},x\in\left(0,\dfrac{\pi}2\right),$$于是$$f'(x)=-x\cdot \dfrac{x^2+x\sin x\cos x-2\sin^2x}{(\sin x-x\cos x)^2}=-x\cdot \dfrac{2x^2+x\sin 2x+2\cos 2x-2}{2(\sin x-x\cos x)^2}.$$设$\varphi(x)=2x^2+x\sin 2x+2\cos 2x-2$,则$$\varphi'(x)=4x+2x\cos 2x-3\sin 2x,$$进而$$\varphi''(x)=4-4x\sin 2x-4\cos 2x=8\sin ^2x-8x\sin x\cos x=8\sin x\cos x(\tan x-x)>0,$$以下略.
7.欲证明$$\ln\left(2^2+1\right)+\ln\left(3^2+1\right)+\cdots+\ln\left(n^2+1\right)<1+2\ln n!,$$加强到$$\ln\left(2^2+1\right)+\ln\left(3^2+1\right)+\cdots+\ln\left(n^2+1\right)<1+2\ln n!-\dfrac 1{n+\dfrac 12}.$$只需要证明$$\ln \left(n^2+1\right)<2\ln n +\dfrac{1}{\left(n-\dfrac 12\right)\left(n+\dfrac 12\right)},$$即$$\ln\left(1+\dfrac{1}{n^2}\right)<\dfrac{1}{\left(n-\dfrac 12\right)\left(n+\dfrac 12\right)}.$$而我们熟知当$x>0$时,有$$\ln(1+x)<x,$$于是$$\ln\left(1+\dfrac{1}{n^2}\right)<\dfrac 1{n^2}<\dfrac 1{n^2-\dfrac 14},$$命题得证.
请问,第七题,x>0时,ln(1+x)不是应该>2x/(2+x)吗?
用错了,已改,多谢指正!