已知\[(n+1)^{\alpha+1}-n^{\alpha+1}<n^\alpha(\alpha+1)<n^{\alpha+1}-(n-1)^{\alpha+1},\quad -1<\alpha<0,\]设 $x=\displaystyle\sum_{k=4}^{10^6} \frac{1}{\sqrt[3]{k}}$,则 $x$ 的整数部分为_______.
答案 $14996$.
解析 取 $\alpha=-\dfrac 13$,$n=4,5,6,\cdots,10^6$,各式相加可得\[\left(10^6+1\right)^{\frac 23}-4^{\frac 23}<\dfrac 23\sum_{k=4}^{10^6}\dfrac1{\sqrt[3]k}<\left(10^6\right)^{\frac 23}-3^{\frac 23},\]于是\[\dfrac 32\left(10^6+1\right)^{\frac 23}-\dfrac 32\cdot 4^{\frac 23}<x<15000-\dfrac 32\cdot 3^{\frac 23},\]一方面,有\[\dfrac 32\cdot 3^{\frac 23}>3\impliedby 3^2>2^3,\]于是\[15000-\dfrac 32\cdot 3^{\frac 23}<14997,\]另一方面,有\[\dfrac 32\cdot 4^{\frac 23}<4\impliedby 3^3<2^5,\]于是\[\dfrac 32\left(10^6+1\right)^{\frac 23}-\dfrac 32\cdot 4^{\frac 23}>15000-4=14996,\]综上所述,$x$ 的整数部分为 $14996$.
备注 题中辅助不等式的证明:当 $\alpha\in (-1,0)$ 时,考虑单调递减函数 $f(x)=(\alpha+1)x^\alpha$,有\[\int_n^{n+1}f(x){ {\rm d}} x<f(n)<\int_{n-1}^nf(x){ {\rm d}} x,\]即得.