每日一题[3091]三分天下

a>0,函数 f(x)={x+2,x<a,a2x2,axa,x1,x>a. 给出下列四个结论:

f(x) 在区间 (a1,+) 上单调递減;

② 当 a1 时,f(x) 存在最大值;

③ 设 M(x1,f(x1))x1a),N(x2,f(x2))x2>a),则 |MN|>1

④ 设 P(x3,f(x3))x3<a),Q(x4,f(x4))x4a).若 |PQ| 存在最小值,则 a 的取值范围是 (0,12]

其中所有正确结论的序号是_______.

答案    ②③.

解析    函数 f(x) 的图象如图,其中半圆的半径为 r

① 当 $a=\dfrac 12$ 时,$f(x)$$\left(-\dfrac 12,0\right)$ 上单调递增,结论错误;

② 当 $a\geqslant 1$ 时,有\[f(x)\begin{cases} <2-a,&x<-a,\\
\leqslant a,&-a\leqslant x\leqslant a,\\
<-\sqrt a-1,&x>a,\end{cases}\leqslant a,
\]等号当且仅当 $x=0$ 时取得,因此 $f(x)$ 存在最大值 $a$,结论正确;

③ 根据题意,$N\left(a,-\sqrt a-1\right)$,记直线 $l:y=x+2$$A(a,0)$,有\[|MN|\geqslant \begin{cases} d(N,l),&x_1<-a,\\
|PN|,&-a\leqslant x_1\leqslant a,\end{cases}=\begin{cases} \dfrac{a+\sqrt a+2}{\sqrt 2},&x_1<-a,\\
\sqrt a+1,&-a\leqslant x_1\leqslant a,\end{cases}>1,
\]结论正确;

④ 根据题意,原点 $O$ 在直线 $y=x$ 上的投影横坐标小于 $-a$,因此 $a$ 的取值范围是 $\left(0,1\right)$,结论错误.

综上所述,结论 ②③ 正确.

此条目发表在每日一题分类目录,贴了标签。将固定链接加入收藏夹。

发表回复