每日一题[2454]半壁江山

$\displaystyle \sum_{k=0}^{1010}(-1)^k\dbinom{2021}{2k}=$ _______.

答案    $-2^{1010}$.

解析    根据题意, 有\[\begin{split}\displaystyle \sum_{k=0}^{1010}(-1)^k\dbinom{2021}{2k}&=\sum_{k=0}^{1010}{\rm i}^{2k}\dbinom{2021}{2k}\\ &=\mathop{\rm Re}(1+{\rm i})^{2021}\\ &=\mathop{\rm Re}\left(\dfrac{\pi}4:\sqrt 2\right)^{2021}\\ &=\mathop{\rm Re}\left(\dfrac{5\pi}4:2^{\frac{2021}2}\right)\\ &=-2^{1010}.\end{split}\]

此条目发表在每日一题分类目录,贴了标签。将固定链接加入收藏夹。

发表回复