已知数列 {an} 满足 an+1an−2n2(an+1−an)+1=0,且 a1=1,其前 n 项和为 Sn,则 S15=( )
A.196
B.225
C.256
D.289
答案 B.
解析 根据题意,有an+1=2n2an+12n2−an=an+12n21−an⋅12n2,
设 an=tanθn,θn∈(−π2,π2),且 θ1=π4,则有θn+1=θn+arctan12n2⟺θn+1−arctan(2n+1)=θn−arctan(2n−1),
进而θn+1−arctan(2n+1)=θn−arctan(2n−1)=⋯=θ1−arctan1=0,
因此θn=arctan(2n−1)⟹an=2n−1,
因此S15=15∑k=1(2k−1)=225.