每日一题[2273]强硬降次

计算 $\displaystyle\sum_{k=1}^{1008}\cos^{2016}\dfrac{k\pi}{1008}$.

答案    $\dfrac{63}{2^{2012}}\left(\dbinom{2016}{1008}+2\right)$.

解析    设 $\omega=\left(\dfrac{\pi}{1008}:1\right)$ 为 $2016$ 次单位根,则 $\omega^{2016}=1$,且由单位根的性质知\[\forall l\in \mathbb{N},\quad \sum\limits_{k=1}^{2016}(\omega^k)^l=\begin{cases}2016,&2016\mid l,\\ 0,&2016\nmid l.\end{cases}\]因此,有\[ \begin{split}\sum\limits_{k=1}^{1008}\cos^{2016}\dfrac{k\pi}{1008}&=\sum\limits_{k=1}^{1008}\dfrac 1 2\left(\cos^{2016}\left(\dfrac{k\pi}{1008}\right)+\cos^{2016}\left(\dfrac{k\pi}{1008}+\pi\right)\right)\\ &=\dfrac 1 2\sum\limits_{k=1}^{2016}\cos ^{2016}\dfrac{k\pi}{1008}\\ &=\dfrac 1 2\sum\limits_{k=1}^{2016}\left(\dfrac 1 2\left(\omega^k+\dfrac{1}{\omega^k}\right)\right)^{2016}\\ &=\dfrac{1}{2^{2017}}\sum\limits_{k=1}^{2016}(\omega^{2k}+1)^{2016}\\ &=\dfrac{1}{2^{2017}}\sum\limits_{k=1}^{2016}\sum\limits_{l=0}^{2016}\dbinom{2016}l\omega^{2kl}\\ &=\dfrac{1}{2^{2017}}\sum\limits_{l=0}^{2016}\dbinom{2016}l\sum\limits_{k=1}^{2016}\omega^{2kl}\\ &=\dfrac{1}{2^{2017}}\left(\dbinom{2016}0\cdot 2016+\dbinom{2016}{1008}\cdot 2016+\dbinom{2016}{2016} \cdot 2016\right)\\ &=\dfrac{63}{2^{2012}}\left(\dbinom{2016}{1008}+2\right).\end{split}\]

此条目发表在每日一题分类目录,贴了标签。将固定链接加入收藏夹。

发表评论