已知在 $\triangle A B C$ 中,$B-C \geqslant \dfrac{\pi}{3}$,且满足其外接圆半径为 $2$,则其面积与周长的比值最大值为( )
A.$\dfrac{1}{2}$
B.$\dfrac{3}{8}$
C.$\dfrac{\sqrt{2}}{3}$
D.$\dfrac{\sqrt{3}}{4}$
答案 B.
解析 记外接圆半径为 $R$,根据题意,所求比为\[\dfrac{2R^2\sin A\sin B\sin C}{2R(\sin A+\sin B+\sin C)}=\dfrac{R\sin A\sin B\sin C}{4\cos\dfrac A2\cos\dfrac B2\cos\dfrac C2}=4\sin\dfrac A2\sin \dfrac B2\sin \dfrac C2,\]而\[\begin{split} 4\sin\dfrac A2\sin \dfrac B2\sin \dfrac C2&=2\cos\dfrac {B+C}2\left(\cos\dfrac{B-C}2-\cos\dfrac{B+C}2\right)\\ &\leqslant 2\left(\dfrac 12\cos\dfrac{B-C}2\right)^2\\ &\leqslant \dfrac 38,\end{split}\]等号当 $B-C=\dfrac{\pi}3$ 且 $\cos\dfrac{B+C}2=\dfrac{\sqrt 3}4$ 时取得,因此所求最大值为 $\dfrac 38$.