已知平面向量 →a,→b,→c 满足 |→b|⋅|→c|=1,|3→a−→b−→c|=|→a⋅→b|⋅|→c|,则 −3|→a|2+2|→b|2+|→c|2 的最小值是[[nn]];此时 |→c|=_______.
答案 √5−32;4√5
解析 设 |→b|=x,|→c|=1x,则3|→a|−|→b|−|→c|⩽于是3\left|\overrightarrow a\right|-x-\dfrac 1x\leqslant \left|\overrightarrow a\right|\implies \left|\overrightarrow a\right|\leqslant \dfrac 12\left(x+\dfrac 1x\right),从而-3\left|\overrightarrow a\right|^2+2\left|\overrightarrow b\right|^2+\left|\overrightarrow c\right|^2\geqslant -\dfrac 34\left(x+\dfrac 1x\right)^2+2x^2+\dfrac{1}{x^2}=\dfrac 54x^2+\dfrac{1}{4x^2}-\dfrac 32\geqslant \dfrac{\sqrt 5-3}2,等号当且仅当 \overrightarrow a,\overrightarrow b,\overrightarrow c 同向且模长分别为 \dfrac 12\left(\sqrt[4]5+\dfrac{1}{\sqrt[4]5}\right),\dfrac{1}{\sqrt[4]5},\sqrt[4]5 时取得,因此所求最小值为 \dfrac{\sqrt 5-3}2.此时 \left|\overrightarrow c\right|=\sqrt[4]5.