每日一题[2080]半角公式

设 $\dfrac{1+\sin x}{\cos x}=\dfrac {22}7$ 且 $\dfrac{1+\cos x}{\sin x}=\dfrac mn$,其中 $\dfrac mn$ 为最简分数,则 $m+n=$ _______..

答案    $44$.

解析    根据题意,有\[\begin{cases} \dfrac{1+\sin x}{\cos x}=\dfrac {22}7,\\ \dfrac{1+\cos x}{\sin x}=\dfrac mn,\end{cases}\iff \begin{cases} \tan\left(\dfrac{\pi}4-\dfrac x2\right)=\dfrac7{22},\\ \tan\dfrac x2=\dfrac nm,\end{cases}\]因此\[\dfrac{1-\dfrac nm}{1+\dfrac nm}=\dfrac 7{22}\implies \dfrac nm=\dfrac{15}{29}\implies m+n=44.\]

此条目发表在每日一题分类目录,贴了标签。将固定链接加入收藏夹。

发表评论