已知数列 {an} 满足:a1=2t−3(t∈R 且 t≠±1),且对任意 n∈N∗,有an+1=(2tn+1−3)an+2(t−1)tn−1an+2tn−1.
1、求数列 {an} 的通项公式.
2、若 t>0,试比较 an+1 与 an 的大小.
解析
1、由原式变形得an+1=2(tn+1−1)(an+1)an+2tn−1−1,
则an+1+1tn+1−1=2(an+1)an+2tn−1=2(an+1)tn−1an+1tn−1+2.
记 an+1tn−1=bn,则 bn+1=2bnbn+2,且b1=a1+1t−1=2t−2t−1=2.
又1bn+1=1bn+12,
从而有1bn=1b1+(n−1)⋅12=n2,
故an+1tn−1=2n,
于是有 an=2(tn−1)n−1.
2、作差比较得an+1−an=2(tn+1−1)n+1−2(tn−1)n=2(t−1)n(n+1)(n(1+t+⋯+tn−1+tn)−(n+1)(1+t+⋯+tn−1))=2(t−1)n(n+1)(ntn−(1+t+⋯+tn−1))=2(t−1)n(n+1)((tn−1)+(tn−t)+⋯+(tn−tn−1))=2(t−1)2n(n+1)((tn−1+tn−2+⋯+1)+t(tn−2+tn−3+⋯+1)+⋯+tn−1),
显然,在 t>0 且 t≠1 时恒有an+1−an>0,
故 an+1>an.