解方程:$8x^3-6x-1=0$.
答案 $\cos\dfrac{\pi}9,-\dfrac{2\pi}9,-\dfrac{4\pi}9$.
解析 令 $f(x)=8x^3-6x-1$,则其导函数\[f'(x)=6(2x+1)(2x-1),\]进而\[\begin{array} {c|ccccc}\hline x&\left(-\infty,-\dfrac 12\right)&-\dfrac 12&\left(-\dfrac 12,\dfrac 12\right)&\dfrac 12&\left(\dfrac 12,+\infty\right)\\ \hline f(x)&\nearrow&1&\searrow&-3&\nearrow\\ \hline \end{array}\] 结合\[f(-1)=-3,f(1)=1,\]于是 $f(x)$ 有三个零点,均在 $(-1,1)$ 内.令 $x=\cos\theta$($\theta\in (0,2\pi)$),则\[8\cos^3\theta-6\cos\theta-1=0\iff \cos 3\theta=\dfrac 12, \]于是\[\theta=\dfrac{\pi}9,\dfrac{7\pi}9,\dfrac{13\pi}9,\]从而原方程的解为 $\cos\dfrac{\pi}9,-\cos\dfrac{2\pi}9,-\cos\dfrac{4\pi}9$.