已知 n∈N∗,求证:2n3√n<n∑k=1√k<4n+36√n.
解析 考虑裂项an=(n+λ)√n,n∈N∗,计算√nan−an−1=√n(n+λ)√n−(n−1+λ)⋅√n−1=√n(√n−√n−1)(2n−1+√n(n−1))+λ(√n−√n−1)=n+√n(n−1)2n+√n(n−1)−1+λ=23+√n(n−1)−n+2(1−λ)6n+3√n(n−1)−3(1−λ),由于12<n−√n(n−1)⩽1,于是分别取 λ=12,34,则有23(n+12)√n⩽n∑k=1√k<23(n+34)√n,因此原命题得证.