已知 n∈N∗,则 C14n+1+C54n+1+C94n+1+⋯+C4n+14n+1= _______.
答案 24n−1+(−1)n⋅22n−1.
解析 记A0=C04n+1+C44n+1+C84n+1+⋯+C4n4n+1,A1=C14n+1+C54n+1+C94n+1+⋯+C4n+14n+1,A2=C24n+1+C64n+1+C104n+1+⋯+C4n−24n+1,A3=C34n+1+C74n+1+C114n+1+⋯+C4n−14n+1,
且f(x)=(1+x)4n+1,
即f(x)=C04n+1+C14n+1x+C24n+1x2+⋯+C4n+14n+1x4n+1,
则{f(1)=A0+A1+A2+A3,f(i)=A0+A1i−A2−A3i,f(−1)=A0−A1+A2−A3,f(−i)=A0−A1i−A2+A3i,
进而可得{A0+A1+A2+A3=24n+1,−A0i+A1+A2i−A3=−i(1+i)4n+1,−A0+A1−A2+A3=0,A0i+A1−A2i−A3=i(1−i)4n+1,
因此A1=24n−1+(−1)n⋅22n−1.
高考那两天刚好给学生讲了这个赋值的知识点,本周上课给学生练练这道题!