每日一题[110] 消元

已知\(x,y\in \mathcal R\),\(\theta\in\left(\dfrac{\pi}4,\dfrac{\pi}2\right)\),且满足\[\begin{cases}\dfrac{\sin\theta}{x}=\dfrac{\cos\theta}{y}\\\dfrac{\cos^2\theta}{x^2}+\dfrac{\sin^2\theta}{y^2}=\dfrac{10}{3\left(x^2+y^2\right)}\end{cases}\]求\(\dfrac{x}{y}\)的值.


 

cover正确答案是\(\sqrt 3\).

已知条件中有三个变量,但只有两个方程,欲求的式子中不含\(\theta\),因此代数变形的策略应是想办法消去\(\theta\).

令\(\dfrac{x}{y}=t\),则\[\sin\theta=t\cos\theta,\]因此结合\[\sin^2\theta+\cos^2\theta=1,\]得\[\sin^2\theta=\dfrac{t^2}{t^2+1},\cos^2\theta=\dfrac{1}{t^2+1},\]代入第二个式子中有\[\dfrac{1}{t^2+1}\cdot\dfrac{x^2+y^2}{x^2}+\dfrac{t^2}{t^2+1}\cdot\dfrac{x^2+y^2}{y^2}=\dfrac{10}{3},\]进而有\[\dfrac{1}{t^2+1}\cdot\dfrac{t^2+1}{t^2}+\dfrac{t^2}{t^2+1}\cdot\left(t^2+1\right)=\dfrac{10}{3},\]化简得\[3t^4-10t^2+3=0,\]解得\[t=\pm\dfrac{\sqrt 3}{3}\lor\pm\sqrt 3.\]由于\(t=\tan\theta\in\left(1,+\infty\right)\),因此所求\(\dfrac{x}{y}\)的值为\(\sqrt 3\).

下面给出一道练习题.

已知实数\(x_1,x_2,y_1,y_2\)满足\[\begin{cases}x_1^2+y_1^2=1,\\x_2^2+y_2^2=1,\\x_1x_2+y_1y_2=0,\end{cases}\]求证:\(x_1^2+x_2^2\)为定值.

此条目发表在每日一题分类目录,贴了标签。将固定链接加入收藏夹。

发表回复