每日一题[1060]内接正三角形

如图,在 \(\triangle AOB\) 中,\(\angle AOB=90^\circ\),\(OA=1\),\(OB=\sqrt 3\),等边 \(\triangle EFG\) 的三个顶点分别在 \(\triangle AOB\) 的三边上运动,则 \(\triangle EFG\) 边长的最小值为(  )

A.\(\dfrac12\)
B.\(\dfrac 23\)
C.\(\dfrac{\sqrt{21}}7\)
D.\(\dfrac{\sqrt 6}4\)


cover

正确答案是C.

分析与解 设 \(\triangle EFG\) 的边长为 \(x\),\(\angle EFO=\theta\),则 \(\angle GFB=\dfrac{2\pi}3-\theta\),\(\angle FGB=\dfrac{\pi}6+\theta\),在 \(\triangle GFB\) 中应用正弦定理,有\[\dfrac{GF}{\sin\angle GBF}=\dfrac{BF}{\sin\angle FGB},\]即\[BF=GF\cdot \dfrac{\sin\angle GFB}{\sin\angle GBF}=2x\sin\left(\theta+\dfrac{\pi}6\right),\]因此由 \(OF+FB=OB\) 可得\[x\cos\theta+2x\sin\left(\theta+\dfrac{\pi}6\right)=\sqrt 3,\]解得\[\begin{split}x&=\dfrac{\sqrt 3}{\cos \theta+2\sin\left(\theta+\dfrac{\pi}6\right)}\\
&=\dfrac{\sqrt 3}{\sqrt 3\sin\theta+2\cos\theta}\\
&\geqslant \dfrac{\sqrt 3}{\sqrt 7}=\dfrac{\sqrt{21}}7,\end{split}\]等号当 \(\theta=\arctan\dfrac{\sqrt 3}2\) 时取得.因此所求边长的最小值为 \(\dfrac{\sqrt{21}}7\).

此条目发表在每日一题分类目录,贴了标签。将固定链接加入收藏夹。

发表回复