求证:$\tan ^21^\circ+\tan ^22^\circ+\tan ^23^\circ+\cdots+\tan ^288^\circ+\tan ^289^\circ=\dfrac{15931}{3}$.
分析与解 由棣莫佛公式,有\[\cos nx+{\rm i}\sin nx=\left(\cos x+{\rm i}\sin x\right)^n,\]于是\[\begin{split}\cos nx &={\rm C}_n^0\cos^nx-{\rm C}_n^2\cos^{n-2}x\sin^2x+{\rm C}_n^4\cos^{n-4}x\sin^4x-\cdots,\\\sin nx &={\rm C}_n^1\cos^{n-1}x\sin x-{\rm C}_n^3\cos^{n-3}x\sin^3x+{\rm C}_n^5\cos^{n-5}x\sin^5x-\cdots,\end{split}\]也即\[\begin{split}\cos nx &=\cos^nx\cdot \left({\rm C}_n^0-{\rm C}_n^2\tan^2x+{\rm C}_n^4\tan^4x-\cdots\right),\\\sin nx &=\cos^{n-1}x\cdot \sin x\cdot \left({\rm C}_n^1-{\rm C}_n^3\tan^2x+{\rm C}_n^5\tan^4x-\cdots\right),\end{split}\]在第二个式子中,令$n=180$,$x$分别为$1^\circ,2^\circ,3^\circ,\cdots,89^\circ$,可得$\tan^21^\circ,\tan^22^\circ,\tan^23^\circ,\cdots,\tan^289^\circ$是关于$t$的方程\[{\rm C}_{180}^1-{\rm C}_{180}^3t+{\rm C}_{180}^5t^2-\cdots+{\rm C}_{180}^{179}t^{89}=0\]的$89$个实根,于是根据韦达定理,有\[\tan ^21^\circ+\tan ^22^\circ+\tan ^23^\circ+\cdots+\tan ^288^\circ+\tan ^289^\circ=-\dfrac{-{\rm C}_{180}^{177}}{{\rm C}_{180}^{179}}=\dfrac{15931}{3}.\]
注 这是尬题Top5中的问题的拓展.原问题如下:
证明:$\tan ^21^\circ+\tan ^23^\circ+\tan ^25^\circ+\cdots+\tan ^287^\circ+\tan ^289^\circ=4005$.