已知n是正整数,数列{ak}满足a1=1n(n+1),且ak+1=−1k+n+1+nkk∑i=1ai,其中k=1,2,⋯.
(1) 求a2,a3;
(2) 求数列{ak}的通项;
(3) 设bn=n∑k=1√ak,求证:limn→∞bn=ln2.
分析与解 (1) 根据已知,有a2=−1n+2+n⋅1n(n+1)=1(n+1)(n+2),且a3=−1n+3+n2(1n(n+1)+1(n+1)(n+2))=1(n+2)(n+3).
(2) 由a1,a2容易归纳出ak=1(n+k−1)(n+k),k∈N∗.下面用数学归纳法证明:
当k=1时,由已知知结论成立;
若对i⩽,有a_i=\dfrac {1}{(n+i-1)(n+i)}成立;则对i=k+1,有\begin{split} a_{k+1}=&-\dfrac{1}{k+n+1}+\dfrac nk\sum_{i=1}^k\dfrac {1}{(n+i-1)(n+i)}\\=&-\dfrac{1}{k+n+1}+\dfrac nk\sum_{i=1}^k\left(\dfrac 1{n+i-1}-\dfrac 1{n+i}\right)\\=&-\dfrac{1}{k+n+1}+\dfrac nk\left(\dfrac 1n-\dfrac 1{n+k}\right)\\=&-\dfrac{1}{k+n+1}+\dfrac nk\cdot\dfrac {k}{n(n+k)}\\=&\dfrac{1}{(n+k)(n+k+1)}.\end{split}所以对i=k+1命题也成立;
由数学归纳法知,对任意k\in\mathbb{N}^*,有a_k=\dfrac{1}{(n+k-1)(n+k)}.
(3) 因为\dfrac 1{n+k}<\sqrt{a_k}<\dfrac 1{n+k-1},所以有\dfrac{1}{n+1}+\dfrac{1}{n+2}+\cdots+\dfrac{1}{2n}<b_n<\dfrac 1n+\dfrac{1}{n+1}+\cdots+\dfrac{1}{2n-1}.考虑左边,有\dfrac{1}{n+1}+\dfrac{1}{n+2}+\cdots+\dfrac{1}{2n-1}>\int_{n+1}^{2n}\dfrac 1x{\rm d} x=\ln\dfrac{2n}{n+1}.类似的,对于右边,有\dfrac{1}{n}+\dfrac{1}{n+1}+\cdots+\dfrac{1}{2n-1}<\int_{n-1}^{2n-1}\dfrac 1x{\rm d}x=\ln \dfrac{2n-1}{n-1}.于是有\ln\dfrac{2n}{n+1}<b_n<\ln\dfrac{2n-1}{n-1},因此\lim\limits_{n\to \infty}b_n=\ln 2.
兰神,《高考压轴题的分析与解》第二版啥时候出啊?