每日一题[953]上上下下

设数列$a_1,a_2,a_3,\cdots ,a_{21}$满足:$\left|a_{n+1}-a_n\right|=1$($n=1,2,3,\cdots,20$),$a_1,a_7,a_{21}$成等比数列.若$a_1=1$,$a_{21}=9$,则满足条件的不同数列的个数为_______.


正确答案是$15099$.

分析与解 设$b_n=a_{n+1}-a_n$,$n=1,2,\cdots,20$,则数列$a_1,a_2,a_3,\cdots,a_{21}$与有序数组$$\left(b_1,b_2,\cdots,b_{20}\right)$$一一对应,且$b_i\in\{1,-1\}$($i=1,2,\cdots,20$).根据题意,有$a_7=3$或$a_7=-3$,于是\[\begin{cases}b_1+b_2+\cdots +b_6=2,\\ b_7+b_8+\cdots+b_{20}=6,\end{cases}\]或\[\begin{cases}b_1+b_2+\cdots+b_6=-4,\\ b_7+b_8+\cdots+b_{20}=12,\end{cases} \]对应的个数为\[{\rm C}_6^4{\rm C}_{14}^{10}+{\rm C}_6^1{\rm C}_{14}^{13}=15099.\]

此条目发表在每日一题分类目录,贴了标签。将固定链接加入收藏夹。

每日一题[953]上上下下》有 2 条评论

  1. zyounan123说:

    "则数列a1,a2,a3,⋯,a21与有序数组(b1,b2,⋯,b20)一一对应"
    应该是从a2开始吧?

发表评论